Universal enveloping Lie Rota--Baxter algebras of pre-Lie and post-Lie algebras
Algebra i logika, Tome 58 (2019) no. 1, pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Universal enveloping Lie Rota–Baxter algebras of pre-Lie and post-Lie algebras are constructed. It is proved that the pairs of varieties (RBLie, preLie) and (RB$_\lambda$Lie, postLie) are PBW-pairs and that the variety of Lie Rota–Baxter algebras is not a Schreier variety.
Keywords: pre-Lie algebra, post-Lie algebra, Rota–Baxter algebra, uni­versal enveloping algebra, Lyndon–Shirshov word, PBW-pair of varieties, Schreier variety, partially commutative Lie algebra.
@article{AL_2019_58_1_a0,
     author = {V. Yu. Gubarev},
     title = {Universal enveloping {Lie} {Rota--Baxter} algebras of {pre-Lie} and {post-Lie} algebras},
     journal = {Algebra i logika},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2019_58_1_a0/}
}
TY  - JOUR
AU  - V. Yu. Gubarev
TI  - Universal enveloping Lie Rota--Baxter algebras of pre-Lie and post-Lie algebras
JO  - Algebra i logika
PY  - 2019
SP  - 3
EP  - 21
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2019_58_1_a0/
LA  - ru
ID  - AL_2019_58_1_a0
ER  - 
%0 Journal Article
%A V. Yu. Gubarev
%T Universal enveloping Lie Rota--Baxter algebras of pre-Lie and post-Lie algebras
%J Algebra i logika
%D 2019
%P 3-21
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2019_58_1_a0/
%G ru
%F AL_2019_58_1_a0
V. Yu. Gubarev. Universal enveloping Lie Rota--Baxter algebras of pre-Lie and post-Lie algebras. Algebra i logika, Tome 58 (2019) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/AL_2019_58_1_a0/

[1] A. Cayley, “On the theory of analytic forms called trees”, The collected mathematical papers of Arthur Cayley, Sc.D., F.R.S., Sadlerian Prof. Pure Math. in The collected mathematical papers of Arthur Cayley, Sc. D., F. R. S., Sadlerian Prof. Pure Math, in the Univ. Cambridge, v. III, Univ. Press, Cambridge, 1890, 242–246 | MR

[2] E. B. Vinberg, “Teoriya odnorodnykh vypuklykh konusov”, Tr. MMO, 12, GIFML, M., 1963, 303–358 | Zbl

[3] J.-L. Koszul, “Domaines bornes homogenes et orbites de groupes de transformations affines”, Bull. Soc. Math. Fr., 89 (1961), 515–533 | MR | Zbl

[4] M. Gerstenhaber, “The cohomology structure of an associative ring”, Ann. Math. (2), 78 (1963), 267–288 | MR | Zbl

[5] S. Bai, Introduction to pre-Lie algebras, preprint, 26 pp. http://einspem.upm.edu.my/equals8/CSS/pre-Lie.pdf

[6] D. Burde, “Left-symmetric algebras, or pre-Lie algebras in geometry and physics”, Cent. Eur. J. Math., 4:3 (2006), 323–357 | MR | Zbl

[7] D. Manchon, “A short survey on pre-Lie algebras”, Noncommutative geometry and physics: Renormalisation, motives, index theory, Based on the workshop “Number theory and physics” (Vienna, Austria, March 2009), ESI Lect. Math. Phys., ed. A. Carey, eds. H. Grosse, S. Rosenberg, EMS, Zurich, 2011, 89–102 | MR | Zbl

[8] B. Vallette, “Homology of generalized partition posets”, J. Pure Appl. Algebra, 208:2 (2007), 699–725 | MR | Zbl

[9] J.-L. Loday, “Dialgebras”, Dialgebras and related operads, Lect. Notes Math., 1763, eds. J.-L. Loday et al., Springer, Berlin, 2001, 7–66 | MR | Zbl

[10] J.-L. Loday, M. Ronco, “Trialgebras and families of polytopes”, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, Papers from the int. conf. on algebraic topology (Northwestern Univ., Evanston, IL, USA, March 24–28, 2002), Contemp. Math., 346, eds. P. Goerss et al., Am. Math. Soc., Providence, RI, 2004, 369–398 | MR | Zbl

[11] D. Burde, K. Dekimpe, “Post-Lie algebra structures on pairs of Lie algebras”, J. Algebra, 464 (2016), 226–245 | MR | Zbl

[12] K. Ebrahimi-Fard, A. Lundervold, H. Z. Munthe-Kaas, “On the Lie enveloping algebra of a post-Lie algebra”, J. Lie Theory, 25:4 (2015), 1139–1165 | MR | Zbl

[13] Yu Pan, Q. Liu, C. Bai, L. Guo, “PostLie algebra structures on the Lie algebra $\mathrm{sl}(2, \mathbb{C})$”, Electron. J. Linear Algebra, 23 (2012), 180–197 | MR | Zbl

[14] C. Bai, O. Bellier, L. Guo, X. Ni, “Splitting of operations, Manin products, and Rota-Baxter operators”, Int. Math. Res. Not., 2013, no. 3, 485–524 | MR | Zbl

[15] V. Yu. Gubarev, P. S. Kolesnikov, “Embedding of dendriform algebras into Rota-Baxter algebras”, Cent. Eur. J. Math., 11:2 (2013), 226–245 | MR | Zbl

[16] I. Z. Golubchik, V. V. Sokolov, “Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras”, J. Nonlinear Math. Phys., 7:2 (2000), 184–197 | MR | Zbl

[17] M. Aguiar, “Pre-Poisson algebras”, Lett. Math. Phys., 54:4 (2000), 263–277 | MR | Zbl

[18] G. Bai, L. Guo, X. Ni, “Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras”, Commun. Math. Phys., 297:2 (2010), 553–596 | MR | Zbl

[19] G. Baxter, “An analytic problem whose solution follows from a simple algebraic identity”, Ras. J. Math., 10 (1960), 731–742 | MR | Zbl

[20] A. A. Belavin, V. G. Drinfeld, “O resheniyakh klassicheskogo uravneniya Yanga-Bakstera dlya prostykh algebr Li”, Funkts. analiz i ego pril., 16:3 (1982), 1–29

[21] M. A. Semenov-Tyan-Shanskii, “Chto takoe klassicheskaya r-matritsa”, Funkts. analiz i ego pril., 17:4 (1983), 17–33

[22] L. Guo, An introduction to Rota-Baxter algebra, Surv. Modern Math., 4, International Press, Somerville, MA; Higher Education, Beijing, 2012 | MR | Zbl

[23] A. A. Mikhalev, I. P. Shestakov, “PBW-pairs of varieties of linear algebras”, Commun. Algebra, 42:2 (2014), 667–687 | MR | Zbl

[24] V. Yu. Gubarev, “Svobodnye lievy algebry Rota-Bakstera”, Sib. matem. zh., 57:5 (2016), 1036–1047 | Zbl

[25] V. Gubarev, “Universal enveloping Rota-Baxter algebras of preassociative and postassociative algebra”, J. Algebra, 56 (2018), 298–328 | MR

[26] D. Segal, “Free left-symmetric algebras and an analogue of the Poincare-Birkhoff-Witt theorem”, J. Algebra, 164:3 (1994), 750–772 | MR | Zbl

[27] J.-M. Oudom, D. Guin, “On the Lie enveloping algebra of a pre-Lie algebra”, J. K-theory, 2:1 (2008), 147–167 | MR | Zbl

[28] F. Chapoton, M. Livernet, “Pre-Lie algebras and the rooted trees operad”, Int. Math. Res. Not., 2001, no. 8, 395–408 | MR | Zbl

[29] D. X. Kozybaev, U. U. Umirbaev, “Vlozhenie Magnusa dlya pravosimmetrichnykh algebr”, Sib. matem. zh., 45:3 (2004), 592–599 | Zbl

[30] D. X. Kozybaev, “O strukture universalnoi multiplikativnoi obertyvayuschei algebry svobodnykh pravosimmetrichnykh algebr”, Vestn. KazNU im. Al-Farabi. Ser. matem., mekh., inform., 3 (2007), 3–9

[31] A. I. Shirshov, “O svobodnykh koltsakh Li”, Matem. sb., 45(87):2 (1958), 113–122 | Zbl

[32] K. T. Chen, R. H. Fox, R. S. Lyndon, “Free differential calculus. IV: The quotient groups of the lower central series”, Ann. Math. (2), 68 (1958), 81–95 | MR

[33] F. Cartier, D. Foata, Problemes combinatoires de commutation et rearrangements, Lect. Notes Math., 85, Springer-Verlag, Berlin a.o., 1969 | MR | Zbl

[34] M. Casals-Ruiz, I. Kazachkov, On systems of equations over free partially-commutative groups, Mem. Am. Math. Soc., 999, Am. Math. Soc., Providence, RI, 2011 | MR | Zbl

[35] V. Diekert, G. Rozenberg (eds.), The book of traces, World Scientific, Singapore, 1995 | MR

[36] G. Duchamp, D. Krob, “The free partially commutative Lie algebra: Bases and ranks”, Adv. Math., 95:1 (1992), 92–126 | MR | Zbl

[37] A. J. Duncan, I. V. Kazachkov, V. N. Remeslennikov, “Automorphisms of partially commutative groups. I: Linear subgroups”, Groups Geom. Dyn., 4:4 (2010), 739–757 | MR | Zbl

[38] K. H. Kim, L. Makar-Limanov, J. Neggers, F. W. Roush, “Graph algebras”, J. Algebra, 64 (1980), 46–51 | MR | Zbl

[39] E. H. Poroshenko, “O bazisakh chastichno kommutativnykh algebrakh Li”, Algebra i logika, 50:5 (2011), 595–614 | Zbl

[40] V. Gubarev, P. Kolesnikov, “Groebner-Shirshov basis of the universal enveloping Rota-Baxter algebra of a Lie algebra”, J. Lie Theory, 27:3 (2017), 887–905 | MR | Zbl

[41] J. Qiu, Yu. Chen, “Grobner-Shirshov bases for Lie P-algebras and free Rota-Baxter Lie algebras”, J. Alg. Appl., 16:2 (2017), 1750190, 21 pp. | MR | Zbl

[42] C. Reutenauer, Free Lie algebras, London Math. Soc. Monogr. New Series, 7, Clarendon Press, Oxford, 1993 | MR | Zbl

[43] D. Kozybaev, L. Makar-Limanov, U. Umirbaev, “The Freiheitssatz and the automorphisms of free right-symmetric algebras”, Asian-Eur. J. Math., 1:2 (2008), 243–254 | MR | Zbl