Algebras of Distributions of Binary Isolating Formulas for Quite $o$-Minimal Theories
Algebra i logika, Tome 57 (2018) no. 6, pp. 662-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebras of distributions of binary isolating formulas over a type for quite $o$-minimal theories with nonmaximal number of countable models are described. It is proved that an isomorphism of these algebras for two $1$-types is characterized by the coincidence of convexity ranks and also by simultaneous satisfaction of isolation, quasirationality, or irrationality of those types. It is shown that for quite $o$-minimal theories with nonmaximum many countable models, every algebra of distributions of binary isolating formulas over a pair of nonweakly orthogonal types is a generalized commutative monoid.
Keywords: quite o-minimal theory, countable model, convexity rank, algebras of distributions of binary isolating formulas, generalized commutative monoid.
@article{AL_2018_57_6_a2,
     author = {D. Yu. Emel'yanov and B. Sh. Kulpeshov and S. V. Sudoplatov},
     title = {Algebras of {Distributions} of {Binary} {Isolating} {Formulas} for {Quite} $o${-Minimal} {Theories}},
     journal = {Algebra i logika},
     pages = {662--683},
     publisher = {mathdoc},
     volume = {57},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_6_a2/}
}
TY  - JOUR
AU  - D. Yu. Emel'yanov
AU  - B. Sh. Kulpeshov
AU  - S. V. Sudoplatov
TI  - Algebras of Distributions of Binary Isolating Formulas for Quite $o$-Minimal Theories
JO  - Algebra i logika
PY  - 2018
SP  - 662
EP  - 683
VL  - 57
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_6_a2/
LA  - ru
ID  - AL_2018_57_6_a2
ER  - 
%0 Journal Article
%A D. Yu. Emel'yanov
%A B. Sh. Kulpeshov
%A S. V. Sudoplatov
%T Algebras of Distributions of Binary Isolating Formulas for Quite $o$-Minimal Theories
%J Algebra i logika
%D 2018
%P 662-683
%V 57
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_6_a2/
%G ru
%F AL_2018_57_6_a2
D. Yu. Emel'yanov; B. Sh. Kulpeshov; S. V. Sudoplatov. Algebras of Distributions of Binary Isolating Formulas for Quite $o$-Minimal Theories. Algebra i logika, Tome 57 (2018) no. 6, pp. 662-683. http://geodesic.mathdoc.fr/item/AL_2018_57_6_a2/

[1] D. Yu. Emelyanov, B. Sh. Kulpeshov, S. V. Sudoplatov, “Algebry raspredelenii binarnykh formul v schetno kategorichnykh slabo $o$-minimalnykh strukturakh”, Algebra i logika, 56:1 (2017), 20–54 | Zbl

[2] D. Macpherson, D. Marker, Ch. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Am. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl

[3] B. S. Baizhanov, “Expansion of a model of a weakly $o$-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | MR | Zbl

[4] B. Sh. Kulpeshov, “Rang vypuklosti i ortogonalnost v slabo $o$-minimalnykh teoriyakh”, Izv. HAH PK. Seriya fiz.-matem., 2003, no. 227, 26–31

[5] B. Sh. Kulpeshov, “Schetno-kategorichnye vpolne $o$-minimalnye teorii”, Vestn. NGU. Ser. matem., mekh., inform., 11:1 (2011), 45–57

[6] L. L. Mayer, “Vaught's conjecture for $o$-minimal theories”, J. Symb. Log., 53:1 (1988), 146–159 | DOI | MR | Zbl

[7] B. Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | MR | Zbl

[8] B. Sh. Kulpeshov, S. V. Sudoplatov, “Vaught's conjecture for quite $o$-minimal theories”, Ann. Pure Appl. Logic, 168:1 (2017), 129–149 | DOI | MR | Zbl

[9] S. V. Sudoplatov, Classification of countable models of complete theories, Novosibirsk State Tech. Univ., Novosibirsk, 2014

[10] I. V. Shulepov, S. V. Sudoplatov, “Algebras of distributions for isolating formulas of a complete theory”, Sib. elektron, matem. izv., 11 (2014), 380–407 http://semr.math.nsc.ru/v11/p380-407.pdf | MR | Zbl

[11] K.A. Baikalova, D.Yu. Emelyanov, B.Sh. Kulpeshov, E.A. Palyutin, S.V. Sudoplatov, “Ob algebrakh raspredelenii binarnykh izoliruyuschikh formul teorii abelevykh grupp i ikh uporyadochennykh obogaschenii”, Izv. vuzov. Matem., 2018, no. 4, 3–15