Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2018_57_6_a2, author = {D. Yu. Emel'yanov and B. Sh. Kulpeshov and S. V. Sudoplatov}, title = {Algebras of {Distributions} of {Binary} {Isolating} {Formulas} for {Quite} $o${-Minimal} {Theories}}, journal = {Algebra i logika}, pages = {662--683}, publisher = {mathdoc}, volume = {57}, number = {6}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2018_57_6_a2/} }
TY - JOUR AU - D. Yu. Emel'yanov AU - B. Sh. Kulpeshov AU - S. V. Sudoplatov TI - Algebras of Distributions of Binary Isolating Formulas for Quite $o$-Minimal Theories JO - Algebra i logika PY - 2018 SP - 662 EP - 683 VL - 57 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2018_57_6_a2/ LA - ru ID - AL_2018_57_6_a2 ER -
%0 Journal Article %A D. Yu. Emel'yanov %A B. Sh. Kulpeshov %A S. V. Sudoplatov %T Algebras of Distributions of Binary Isolating Formulas for Quite $o$-Minimal Theories %J Algebra i logika %D 2018 %P 662-683 %V 57 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2018_57_6_a2/ %G ru %F AL_2018_57_6_a2
D. Yu. Emel'yanov; B. Sh. Kulpeshov; S. V. Sudoplatov. Algebras of Distributions of Binary Isolating Formulas for Quite $o$-Minimal Theories. Algebra i logika, Tome 57 (2018) no. 6, pp. 662-683. http://geodesic.mathdoc.fr/item/AL_2018_57_6_a2/
[1] D. Yu. Emelyanov, B. Sh. Kulpeshov, S. V. Sudoplatov, “Algebry raspredelenii binarnykh formul v schetno kategorichnykh slabo $o$-minimalnykh strukturakh”, Algebra i logika, 56:1 (2017), 20–54 | Zbl
[2] D. Macpherson, D. Marker, Ch. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Am. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl
[3] B. S. Baizhanov, “Expansion of a model of a weakly $o$-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | MR | Zbl
[4] B. Sh. Kulpeshov, “Rang vypuklosti i ortogonalnost v slabo $o$-minimalnykh teoriyakh”, Izv. HAH PK. Seriya fiz.-matem., 2003, no. 227, 26–31
[5] B. Sh. Kulpeshov, “Schetno-kategorichnye vpolne $o$-minimalnye teorii”, Vestn. NGU. Ser. matem., mekh., inform., 11:1 (2011), 45–57
[6] L. L. Mayer, “Vaught's conjecture for $o$-minimal theories”, J. Symb. Log., 53:1 (1988), 146–159 | DOI | MR | Zbl
[7] B. Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | MR | Zbl
[8] B. Sh. Kulpeshov, S. V. Sudoplatov, “Vaught's conjecture for quite $o$-minimal theories”, Ann. Pure Appl. Logic, 168:1 (2017), 129–149 | DOI | MR | Zbl
[9] S. V. Sudoplatov, Classification of countable models of complete theories, Novosibirsk State Tech. Univ., Novosibirsk, 2014
[10] I. V. Shulepov, S. V. Sudoplatov, “Algebras of distributions for isolating formulas of a complete theory”, Sib. elektron, matem. izv., 11 (2014), 380–407 http://semr.math.nsc.ru/v11/p380-407.pdf | MR | Zbl
[11] K.A. Baikalova, D.Yu. Emelyanov, B.Sh. Kulpeshov, E.A. Palyutin, S.V. Sudoplatov, “Ob algebrakh raspredelenii binarnykh izoliruyuschikh formul teorii abelevykh grupp i ikh uporyadochennykh obogaschenii”, Izv. vuzov. Matem., 2018, no. 4, 3–15