Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits
Algebra i logika, Tome 57 (2018) no. 6, pp. 639-661.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper enters into a series of works on universal algebraic geometry — a branch of mathematics that is presently flourishing and is still undergoing active development. The theme and subject area of universal algebraic geometry have their origins in classical algebraic geometry over a field, while the language and almost the entire methodological apparatus belong to model theory and universal algebra. The focus of the paper is the problem of finding Dis-limits for a given algebraic structure $\mathcal{A}$, i.e., algebraic structures in which all irreducible coordinate algebras over $\mathcal{A}$ are embedded and in which there are no other finitely generated substructures. Finding a solution to this problem necessitated a good description of principal universal classes and quasivarieties. The paper is divided into two parts. In the first part, we give criteria for a given universal class (or quasivariety) to be principal. In the second part, we formulate explicitly the problem of finding Dis-limits for algebraic structures and show how the results of the first part make it possible to solve this problem in many cases.
Keywords: universal algebraic geometry, universal class, quasivariety, joint embedding property, irreducible coordinate algebra, discriminability, Dis-limit, equational Noetherian property, universal geometric equivalence.
Mots-clés : algebraic structure, equational codomain
@article{AL_2018_57_6_a1,
     author = {E. Yu. Daniyarova and A. G. Myasnikov and V. N. Remeslennikov},
     title = {Algebraic {Geometry} {Over} {Algebraic} {Structures.} {IX.} {Principal} {Universal} {Classes} and {Dis-Limits}},
     journal = {Algebra i logika},
     pages = {639--661},
     publisher = {mathdoc},
     volume = {57},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_6_a1/}
}
TY  - JOUR
AU  - E. Yu. Daniyarova
AU  - A. G. Myasnikov
AU  - V. N. Remeslennikov
TI  - Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits
JO  - Algebra i logika
PY  - 2018
SP  - 639
EP  - 661
VL  - 57
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_6_a1/
LA  - ru
ID  - AL_2018_57_6_a1
ER  - 
%0 Journal Article
%A E. Yu. Daniyarova
%A A. G. Myasnikov
%A V. N. Remeslennikov
%T Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits
%J Algebra i logika
%D 2018
%P 639-661
%V 57
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_6_a1/
%G ru
%F AL_2018_57_6_a1
E. Yu. Daniyarova; A. G. Myasnikov; V. N. Remeslennikov. Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits. Algebra i logika, Tome 57 (2018) no. 6, pp. 639-661. http://geodesic.mathdoc.fr/item/AL_2018_57_6_a1/

[1] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II. Osnovaniya”, Fundam. i prikl. matem., 17:1 (2011/2012), 65–106

[2] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[3] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, v. 1, Monografii NGTU, Izd-vo NGTU, Novosibirsk, 2014

[4] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, v. 2, Monografii NGTU, Izd-vo NGTU, Novosibirsk, 2014

[5] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[6] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group. I: Irreducibility of quadratic equations and Nullstellensatz”, J. Algebra, 200:2 (1998), 472–516 | DOI | MR | Zbl

[7] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group. II: Systems in triangular quasi-quadratic form and description of residually free groups”, J. Algebra, 200:2 (1998), 517–570 | DOI | MR | Zbl

[8] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[9] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups, A Festschrift in honor of A. Gaglione, Papers of the conf. (Fairfield, USA, March 2007), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | MR | Zbl

[10] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures. III: Equationally Noetherian property and compactness”, Southeast Asian Bull. Math., 35:1 (2011), 35–68 | MR | Zbl

[11] E. Yu. Daniyarova, A. G. Myasnikov, V. H. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. IV. Ekvatsionalnye oblasti i ko-oblasti”, Algebra i logika, 49:6 (2010), 715–756

[12] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. V. Sluchai proizvolnoi signatury”, Algebra i logika, 51:1 (2012), 41–60

[13] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. VI. Geometricheskaya ekvivalentnost”, Algebra i logika, 56:4 (2017), 421–442 | Zbl

[14] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Universalnaya geometricheskaya ekvivalentnost algebraicheskikh sistem odnoi signatury”, Sib. matem. zh., 58:5 (2017), 1035–1050 | Zbl

[15] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. VIII. Geometricheskie ekvivalentnosti i osobye klassy algebraicheskikh sistem”, Fundam. i prikl. matem. (to appear)

[16] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Universalnaya algebraicheskaya geometriya”, Dokl. AN, 439:6 (2011), 730–732 | Zbl

[17] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Razmernost v universalnoi algebraicheskoi geometrii”, Dokl. AN, 457:3 (2014), 265–267 | DOI | Zbl

[18] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970

[19] A. A. Mischenko, V. N. Remeslennikov, A. V. Trener, “Universalnye invarianty dlya klassov abelevykh grupp”, Algebra i logika, 56:2 (2017), 176–201 | Zbl