Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits
Algebra i logika, Tome 57 (2018) no. 6, pp. 639-661
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper enters into a series of works on universal algebraic geometry — a branch of mathematics that is presently flourishing and is still undergoing active development. The theme and subject area of universal algebraic geometry have their origins in classical algebraic geometry over a field, while the language and almost the entire methodological apparatus belong to model theory and universal algebra. The focus of the paper is the problem of finding Dis-limits for a given algebraic structure $\mathcal{A}$, i.e., algebraic structures in which all irreducible coordinate algebras over $\mathcal{A}$ are embedded and in which there are no other finitely generated substructures. Finding a solution to this problem necessitated a good description of principal universal classes and quasivarieties. The paper is divided into two parts. In the first part, we give criteria for a given universal class (or quasivariety) to be principal. In the second part, we formulate explicitly the problem of finding Dis-limits for algebraic structures and show how the results of the first part make it possible to solve this problem in many cases.
Keywords:
universal algebraic geometry, universal class, quasivariety, joint embedding property, irreducible coordinate algebra, discriminability, Dis-limit, equational Noetherian property, universal geometric equivalence.
Mots-clés : algebraic structure, equational codomain
Mots-clés : algebraic structure, equational codomain
@article{AL_2018_57_6_a1,
author = {E. Yu. Daniyarova and A. G. Myasnikov and V. N. Remeslennikov},
title = {Algebraic {Geometry} {Over} {Algebraic} {Structures.} {IX.} {Principal} {Universal} {Classes} and {Dis-Limits}},
journal = {Algebra i logika},
pages = {639--661},
publisher = {mathdoc},
volume = {57},
number = {6},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2018_57_6_a1/}
}
TY - JOUR AU - E. Yu. Daniyarova AU - A. G. Myasnikov AU - V. N. Remeslennikov TI - Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits JO - Algebra i logika PY - 2018 SP - 639 EP - 661 VL - 57 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2018_57_6_a1/ LA - ru ID - AL_2018_57_6_a1 ER -
%0 Journal Article %A E. Yu. Daniyarova %A A. G. Myasnikov %A V. N. Remeslennikov %T Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits %J Algebra i logika %D 2018 %P 639-661 %V 57 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2018_57_6_a1/ %G ru %F AL_2018_57_6_a1
E. Yu. Daniyarova; A. G. Myasnikov; V. N. Remeslennikov. Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits. Algebra i logika, Tome 57 (2018) no. 6, pp. 639-661. http://geodesic.mathdoc.fr/item/AL_2018_57_6_a1/