Computable bi-embeddable categoricity
Algebra i logika, Tome 57 (2018) no. 5, pp. 601-608.

Voir la notice de l'article provenant de la source Math-Net.Ru

Presented by Associate Editor S. S. Goncharov.
@article{AL_2018_57_5_a6,
     author = {N. A. Bazhenov and E. B. Fokina and D. Rossegger and L. San Mauro},
     title = {Computable bi-embeddable categoricity},
     journal = {Algebra i logika},
     pages = {601--608},
     publisher = {mathdoc},
     volume = {57},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_5_a6/}
}
TY  - JOUR
AU  - N. A. Bazhenov
AU  - E. B. Fokina
AU  - D. Rossegger
AU  - L. San Mauro
TI  - Computable bi-embeddable categoricity
JO  - Algebra i logika
PY  - 2018
SP  - 601
EP  - 608
VL  - 57
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_5_a6/
LA  - ru
ID  - AL_2018_57_5_a6
ER  - 
%0 Journal Article
%A N. A. Bazhenov
%A E. B. Fokina
%A D. Rossegger
%A L. San Mauro
%T Computable bi-embeddable categoricity
%J Algebra i logika
%D 2018
%P 601-608
%V 57
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_5_a6/
%G ru
%F AL_2018_57_5_a6
N. A. Bazhenov; E. B. Fokina; D. Rossegger; L. San Mauro. Computable bi-embeddable categoricity. Algebra i logika, Tome 57 (2018) no. 5, pp. 601-608. http://geodesic.mathdoc.fr/item/AL_2018_57_5_a6/

[1] A. Montalbán, “Up to equimorphism, hyperarithmetic is recursive”, J. Symb. Log., 70:2 (2005), 360–378 | DOI | MR | Zbl

[2] A. Montalbán, “On the equimorphism types of linear orderings”, Bull. Symb. Log., 13:1 (2007), 71–99 | DOI | MR | Zbl

[3] N. Greenberg, A. Montalbán, “Ranked structures and arithmetic transfinite recursion”, Trans. Am. Math. Soc., 360:3 (2008), 1265–1307 | DOI | MR | Zbl

[4] E. Fokina, D. Rossegger, L. San Mauro, Bi-embeddability spectra and bases of spectra, arXiv: 1808.05451[math.LO]

[5] E. B. Fokina, I. Kalimullin, R. Miller, “Degrees of categoricity of computable structures”, Arch. Math. Logic, 49:1 (2010), 51–67 | DOI | MR | Zbl

[6] B. F. Csima, J. N. Y. Franklin, R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy”, Notre Dame J. Form. Log., 54:2 (2013), 215–231 | DOI | MR | Zbl

[7] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B.V., Amsterdam etc., 2000 | MR | Zbl

[8] N. A. Bazhenov, “Effective categoricity for distributive lattices and Heyting algebras”, Lobachevskii J. Math., 38:4 (2017), 600–614 | DOI | MR | Zbl

[9] N. Bazhenov, E. Fokina, D. Rossegger, L. San Mauro, “Degrees of bi-embeddability categoricity of equivalence structures”, Arch. Math. Logic, 2018 (to appear) | DOI

[10] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl

[11] J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras”, J. Symb. Log., 46:3 (1981), 572–594 | DOI | MR | Zbl

[12] J. B. Remmel, “Recursively categorical linear orderings”, Proc. Am. Math. Soc., 83:2 (1981), 387–391 | DOI | MR | Zbl

[13] R. G. Downey, A. M. Kach, S. Lempp, A. E. M. Lewis-Pye, A. Montalbán, D. D. Turetsky, “The complexity of computable categoricity”, Adv. Math., 268 (2015), 423–466 | DOI | MR | Zbl