Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2018_57_5_a6, author = {N. A. Bazhenov and E. B. Fokina and D. Rossegger and L. San Mauro}, title = {Computable bi-embeddable categoricity}, journal = {Algebra i logika}, pages = {601--608}, publisher = {mathdoc}, volume = {57}, number = {5}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2018_57_5_a6/} }
N. A. Bazhenov; E. B. Fokina; D. Rossegger; L. San Mauro. Computable bi-embeddable categoricity. Algebra i logika, Tome 57 (2018) no. 5, pp. 601-608. http://geodesic.mathdoc.fr/item/AL_2018_57_5_a6/
[1] A. Montalbán, “Up to equimorphism, hyperarithmetic is recursive”, J. Symb. Log., 70:2 (2005), 360–378 | DOI | MR | Zbl
[2] A. Montalbán, “On the equimorphism types of linear orderings”, Bull. Symb. Log., 13:1 (2007), 71–99 | DOI | MR | Zbl
[3] N. Greenberg, A. Montalbán, “Ranked structures and arithmetic transfinite recursion”, Trans. Am. Math. Soc., 360:3 (2008), 1265–1307 | DOI | MR | Zbl
[4] E. Fokina, D. Rossegger, L. San Mauro, Bi-embeddability spectra and bases of spectra, arXiv: 1808.05451[math.LO]
[5] E. B. Fokina, I. Kalimullin, R. Miller, “Degrees of categoricity of computable structures”, Arch. Math. Logic, 49:1 (2010), 51–67 | DOI | MR | Zbl
[6] B. F. Csima, J. N. Y. Franklin, R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy”, Notre Dame J. Form. Log., 54:2 (2013), 215–231 | DOI | MR | Zbl
[7] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B.V., Amsterdam etc., 2000 | MR | Zbl
[8] N. A. Bazhenov, “Effective categoricity for distributive lattices and Heyting algebras”, Lobachevskii J. Math., 38:4 (2017), 600–614 | DOI | MR | Zbl
[9] N. Bazhenov, E. Fokina, D. Rossegger, L. San Mauro, “Degrees of bi-embeddability categoricity of equivalence structures”, Arch. Math. Logic, 2018 (to appear) | DOI
[10] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl
[11] J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras”, J. Symb. Log., 46:3 (1981), 572–594 | DOI | MR | Zbl
[12] J. B. Remmel, “Recursively categorical linear orderings”, Proc. Am. Math. Soc., 83:2 (1981), 387–391 | DOI | MR | Zbl
[13] R. G. Downey, A. M. Kach, S. Lempp, A. E. M. Lewis-Pye, A. Montalbán, D. D. Turetsky, “The complexity of computable categoricity”, Adv. Math., 268 (2015), 423–466 | DOI | MR | Zbl