The axiomatic rank of Levi classes
Algebra i logika, Tome 57 (2018) no. 5, pp. 587-600

Voir la notice de l'article provenant de la source Math-Net.Ru

A Levi class $L(\mathcal M)$ generated by a class $\mathcal M$ of groups is a class of all groups in which the normal closure of each element belongs to $\mathcal M$. It is stated that there exist finite groups $G$ such that a Levi class $L(qG)$, where $qG$ is a quasivariety generated by a group $G$, has infinite axiomatic rank. This is a solution for [The Kourovka Notebook, Quest. 15.36]. Moreover, it is proved that a Levi class $L(\mathcal M)$, where $\mathcal M$ is a quasivariety generated by a relatively free $2$-step nilpotent group of exponent ps with a commutator subgroup of order $p$, $p$ is a prime, $p\ne2$, $s\ge2$, is finitely axiomatizable.
Keywords: quasivariety, nilpotent group, Levi class, axiomatic rank.
@article{AL_2018_57_5_a5,
     author = {S. A. Shakhova},
     title = {The axiomatic rank of {Levi} classes},
     journal = {Algebra i logika},
     pages = {587--600},
     publisher = {mathdoc},
     volume = {57},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_5_a5/}
}
TY  - JOUR
AU  - S. A. Shakhova
TI  - The axiomatic rank of Levi classes
JO  - Algebra i logika
PY  - 2018
SP  - 587
EP  - 600
VL  - 57
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_5_a5/
LA  - ru
ID  - AL_2018_57_5_a5
ER  - 
%0 Journal Article
%A S. A. Shakhova
%T The axiomatic rank of Levi classes
%J Algebra i logika
%D 2018
%P 587-600
%V 57
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_5_a5/
%G ru
%F AL_2018_57_5_a5
S. A. Shakhova. The axiomatic rank of Levi classes. Algebra i logika, Tome 57 (2018) no. 5, pp. 587-600. http://geodesic.mathdoc.fr/item/AL_2018_57_5_a5/