The axiomatic rank of Levi classes
Algebra i logika, Tome 57 (2018) no. 5, pp. 587-600.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Levi class $L(\mathcal M)$ generated by a class $\mathcal M$ of groups is a class of all groups in which the normal closure of each element belongs to $\mathcal M$. It is stated that there exist finite groups $G$ such that a Levi class $L(qG)$, where $qG$ is a quasivariety generated by a group $G$, has infinite axiomatic rank. This is a solution for [The Kourovka Notebook, Quest. 15.36]. Moreover, it is proved that a Levi class $L(\mathcal M)$, where $\mathcal M$ is a quasivariety generated by a relatively free $2$-step nilpotent group of exponent ps with a commutator subgroup of order $p$, $p$ is a prime, $p\ne2$, $s\ge2$, is finitely axiomatizable.
Keywords: quasivariety, nilpotent group, Levi class, axiomatic rank.
@article{AL_2018_57_5_a5,
     author = {S. A. Shakhova},
     title = {The axiomatic rank of {Levi} classes},
     journal = {Algebra i logika},
     pages = {587--600},
     publisher = {mathdoc},
     volume = {57},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_5_a5/}
}
TY  - JOUR
AU  - S. A. Shakhova
TI  - The axiomatic rank of Levi classes
JO  - Algebra i logika
PY  - 2018
SP  - 587
EP  - 600
VL  - 57
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_5_a5/
LA  - ru
ID  - AL_2018_57_5_a5
ER  - 
%0 Journal Article
%A S. A. Shakhova
%T The axiomatic rank of Levi classes
%J Algebra i logika
%D 2018
%P 587-600
%V 57
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_5_a5/
%G ru
%F AL_2018_57_5_a5
S. A. Shakhova. The axiomatic rank of Levi classes. Algebra i logika, Tome 57 (2018) no. 5, pp. 587-600. http://geodesic.mathdoc.fr/item/AL_2018_57_5_a5/

[1] F. W. Levi, “Groups in which the commutator operation satisfies certain algebraic conditions”, J. Indian Math. Soc. New Ser., 6 (1942), 87–97 | MR | Zbl

[2] A. I. Budkin, “Kvazimnogoobraziya Levi”, Sib. matem. zh., 40:2 (1999), 266–270 | MR | Zbl

[3] A. I. Budkin, “O klassakh Levi, porozhdënnykh nilpotentnymi gruppami”, Algebra i logika, 39:6 (2000), 635–647 | MR | Zbl

[4] A. I. Budkin, L. V. Taranina, “O kvazimnogoobraziyakh Levi, porozhdennykh nilpotentnymi gruppami”, Sib. matem. zh., 41:2 (2000), 270–277 | MR | Zbl

[5] V. V. Lodeischikova, “O kvazimnogoobraziyakh Levi, porozhdennykh nilpotentnymi gruppami”, Izv. Alt. gos. un-ta, 2009, no. 1(61), 26–29

[6] V. V. Lodeischikova, “O klassakh Levi, porozhdënnykh nilpotentnymi gruppami”, Sib. matem. zh., 51:6 (2010), 1359–1366 | MR | Zbl

[7] V. V. Lodeischikova, “O kvazimnogoobraziyakh Levi eksponenty $p^s$”, Algebra i logika, 50:1 (2011), 26–41 | MR | Zbl

[8] Unsolved problems in group theory, The Kourovka notebook, No.19, Sobolev Institute of Mathematics, Novosibirsk, 2018 http://www.math.nsc.ru/~alglog/19tkt.pdf

[9] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka 1982, M. | MR

[10] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. gos. un-ta, Barnaul, 2002

[11] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[12] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[13] A. Yu. Olshanskii, “Uslovnye tozhdestva v konechnykh gruppakh”, Sib. matem. zh., 15:6 (1974), 1409–1413

[14] A. N. Fedorov, “O podkvazimnogoobraziyakh nilpotentnykh minimalnykh ne abelevykh mnogoobrazii grupp”, Sib. matem. zh., 21:6 (1980), 117–131 | MR | Zbl

[15] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969