Forcing formulas in Fra\"\i ss\'e structures and classes
Algebra i logika, Tome 57 (2018) no. 5, pp. 567-586.

Voir la notice de l'article provenant de la source Math-Net.Ru

We come up with a semantic method of forcing formulas by finite structures in an arbitrary fixed Fraïssé class $\mathscr F$. Both known and some new necessary and sufficient conditions are derived under which a given structure $\mathscr M$ will be a forcing structure. A formula $\varphi$ is forced at $\bar a$ in an infinite structure $\mathscr M\Vdash\varphi(\bar a)$ if it is forced in $\mathscr F(\mathscr M)$ by some finite substructure of $\mathscr M$. It is proved that every $\exists\forall\exists$-sentence true in a forcing structure is also true in any existentially closed companion of the structure. The new concept of a forcing type plays an important role in studying forcing models. It is proved that an arbitrary structure will be a forcing structure iff all existential types realized in the structure are forcing types. It turns out that an existentially closed structure which is simple over a tuple realizing a forcing type will itself be a forcing structure. Moreover, every forcing type is realized in an existentially closed structure that is a model of a complete theory of its forcing companion.
Keywords: forcing method, forcing structure, forcing type, existentially closed structure, existentially closed companion.
Mots-clés : Fraïssé class
@article{AL_2018_57_5_a4,
     author = {A. T. Nurtazin},
     title = {Forcing formulas in {Fra\"\i} ss\'e structures and classes},
     journal = {Algebra i logika},
     pages = {567--586},
     publisher = {mathdoc},
     volume = {57},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_5_a4/}
}
TY  - JOUR
AU  - A. T. Nurtazin
TI  - Forcing formulas in Fra\"\i ss\'e structures and classes
JO  - Algebra i logika
PY  - 2018
SP  - 567
EP  - 586
VL  - 57
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_5_a4/
LA  - ru
ID  - AL_2018_57_5_a4
ER  - 
%0 Journal Article
%A A. T. Nurtazin
%T Forcing formulas in Fra\"\i ss\'e structures and classes
%J Algebra i logika
%D 2018
%P 567-586
%V 57
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_5_a4/
%G ru
%F AL_2018_57_5_a4
A. T. Nurtazin. Forcing formulas in Fra\"\i ss\'e structures and classes. Algebra i logika, Tome 57 (2018) no. 5, pp. 567-586. http://geodesic.mathdoc.fr/item/AL_2018_57_5_a4/

[1] A. T. Nurtazin, “Schetnye ekzistentsialno zamknutye modeli universalno aksiomatiziruemykh teorii”, Matem. trudy, 18:1 (2015), 48–97 | DOI | MR | Zbl

[2] P. J. Cohen, Set theory and the continuum hypothesis, W. A. Benjamin, Inc., New York–Amsterdam, 1966 | MR | Zbl

[3] J. Barwise, A. Robinson, “Completing theories by forcing”, Ann. Math. Logic, 2 (1970), 119–142 | DOI | MR | Zbl

[4] R. Fraïssé, “Sur quelques classifications des systèmes de rélations”, Publ. Sci. Univ. Alger. Sér. A, 1 (1955), 35–182 | Zbl

[5] Dzh. Barvais, Spravochnaya kniga po matematicheskoi logike. Ch. 1: Teoriya modelei, v 4-kh chastyakh, ed. Dzh. Barvais, Nauka, M., 1982

[6] A. T. Nurtazin, “Svoistva ekzistentsialno zamknutykh kompanonov”, Algebra i logika, 57:3 (2018), 321–337