Criteria for the validity of Goldie's theorems for graded rings
Algebra i logika, Tome 57 (2018) no. 5, pp. 547-555.

Voir la notice de l'article provenant de la source Math-Net.Ru

We specify conditions on a group $G$ that are neccessary and sufficient for analogs of Goldie's theorems to hold in a class of $G$-graded rings, i.e., for every $G$-graded $\mathrm{gr}$-prime ($\mathrm{gr}$-semiprime) right Godie ring to possess a completely $\mathrm{gr}$-reducible graded classical right ring of quotients.
Keywords: graded Goldie rings, graded rings of quotients.
@article{AL_2018_57_5_a2,
     author = {A. L. Kanunnikov},
     title = {Criteria for the validity of {Goldie's} theorems for graded rings},
     journal = {Algebra i logika},
     pages = {547--555},
     publisher = {mathdoc},
     volume = {57},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_5_a2/}
}
TY  - JOUR
AU  - A. L. Kanunnikov
TI  - Criteria for the validity of Goldie's theorems for graded rings
JO  - Algebra i logika
PY  - 2018
SP  - 547
EP  - 555
VL  - 57
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_5_a2/
LA  - ru
ID  - AL_2018_57_5_a2
ER  - 
%0 Journal Article
%A A. L. Kanunnikov
%T Criteria for the validity of Goldie's theorems for graded rings
%J Algebra i logika
%D 2018
%P 547-555
%V 57
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_5_a2/
%G ru
%F AL_2018_57_5_a2
A. L. Kanunnikov. Criteria for the validity of Goldie's theorems for graded rings. Algebra i logika, Tome 57 (2018) no. 5, pp. 547-555. http://geodesic.mathdoc.fr/item/AL_2018_57_5_a2/

[1] C. Năstăsescu, F. van Oystaeyen, Methods of graded rings, Lect. Notes Math., 1836, Springer-Verlag, Berlin, 2004 | MR

[2] A. W. Goldie, “Semi-prime rings with maximum condition”, Proc. Lond. Math. Soc. III Ser., 10 (1960), 201–220 | DOI | MR | Zbl

[3] R. E. Johnson, “Quotient rings of rings with zero singular ideal”, Pac. J. Math., 11:4 (1961), 1385–1392 | DOI | MR | Zbl

[4] C. Năstăsescu, F. van Oystaeyen, Graded and filtered rings and modules, Lect. Notes Math., 758, Springer-Verlag, Berlin a.o., 1979 | MR

[5] A. L. Kanunnikov, “Graduirovannye varianty teoremy Goldi”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 2011, no. 3, 46–50 | MR | Zbl

[6] D. S. Bazhenov, “Graduirovannye pervichnye koltsa Goldi”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 2017, no. 2, 55–57 | MR | Zbl

[7] K. Goodearl, J. T. Stafford, “The graded version of Goldie's theorem”, Algebra and its applications, Proc. int. conf. (Athens, OH, USA, March 25–28, 1999), Contemp. Math., 259, eds. D. V. Huynh et al., Am. Math. Soc., Providence, RI, 2000, 237–240 | DOI | MR | Zbl

[8] A. L. Kanunnikov, “Graduirovannye varianty teoremy Goldi, II”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 2013, no. 3, 47–51 | MR | Zbl