Positive presentations of families in relation to reducibility with respect to enumerability
Algebra i logika, Tome 57 (2018) no. 4, pp. 492-498.

Voir la notice de l'article provenant de la source Math-Net.Ru

Presented by Yu. L. Ershov, Editor-in-Chief.
@article{AL_2018_57_4_a5,
     author = {I. Sh. Kalimullin and V. G. Puzarenko and M. Kh. Faizrakhmanov},
     title = {Positive presentations of families in relation to reducibility with respect to enumerability},
     journal = {Algebra i logika},
     pages = {492--498},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_4_a5/}
}
TY  - JOUR
AU  - I. Sh. Kalimullin
AU  - V. G. Puzarenko
AU  - M. Kh. Faizrakhmanov
TI  - Positive presentations of families in relation to reducibility with respect to enumerability
JO  - Algebra i logika
PY  - 2018
SP  - 492
EP  - 498
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_4_a5/
LA  - ru
ID  - AL_2018_57_4_a5
ER  - 
%0 Journal Article
%A I. Sh. Kalimullin
%A V. G. Puzarenko
%A M. Kh. Faizrakhmanov
%T Positive presentations of families in relation to reducibility with respect to enumerability
%J Algebra i logika
%D 2018
%P 492-498
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_4_a5/
%G ru
%F AL_2018_57_4_a5
I. Sh. Kalimullin; V. G. Puzarenko; M. Kh. Faizrakhmanov. Positive presentations of families in relation to reducibility with respect to enumerability. Algebra i logika, Tome 57 (2018) no. 4, pp. 492-498. http://geodesic.mathdoc.fr/item/AL_2018_57_4_a5/

[1] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[2] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, 2-oe izd., Nauchnaya kniga (NII MIOO NGU), Novosibirsk; Ekonomika, M., 2000 | MR

[3] I. Sh. Kalimullin, V. G. Puzarenko, “O printsipakh vychislimosti na dopustimykh mnozhestvakh”, Matem. tr., 7:2 (2004), 35–71 | MR | Zbl

[4] R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspect. Math. Log. Omega Series, Springer-Verlag 1987, Berlin etc. ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni. Izuchenie vychislimykh funktsii i vychislimo perechislimykh mnozhestv, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | Zbl

[5] S. S. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[6] S. A. Badaev, “O pozitivnykh numeratsiyakh”, Sib. matem. zh., 18:3 (1977), 483–496 | MR | Zbl

[7] S. S. Goncharov, S. Lempp, D. R. Solomon, “Fridbergovskie numeratsii semeistv $n$-vychislimo perechislimykh mnozhestv”, Algebra i logika, 41:2 (2002), 143–154 | MR | Zbl

[8] G. E. Sacks, Higher recursion theory, Perspect. Math. Log., Springer-Verlag, Berlin etc., 1990 | DOI | MR | Zbl

[9] J. C. Owings (jun.), “The meta-r.e. sets, but not the $\Pi^1_1$ sets, can be enumerated without repetition”, J. Symb. Log., 35:2 (1970), 223–229 | DOI | MR | Zbl