Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2018_57_4_a5, author = {I. Sh. Kalimullin and V. G. Puzarenko and M. Kh. Faizrakhmanov}, title = {Positive presentations of families in relation to reducibility with respect to enumerability}, journal = {Algebra i logika}, pages = {492--498}, publisher = {mathdoc}, volume = {57}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2018_57_4_a5/} }
TY - JOUR AU - I. Sh. Kalimullin AU - V. G. Puzarenko AU - M. Kh. Faizrakhmanov TI - Positive presentations of families in relation to reducibility with respect to enumerability JO - Algebra i logika PY - 2018 SP - 492 EP - 498 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2018_57_4_a5/ LA - ru ID - AL_2018_57_4_a5 ER -
%0 Journal Article %A I. Sh. Kalimullin %A V. G. Puzarenko %A M. Kh. Faizrakhmanov %T Positive presentations of families in relation to reducibility with respect to enumerability %J Algebra i logika %D 2018 %P 492-498 %V 57 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2018_57_4_a5/ %G ru %F AL_2018_57_4_a5
I. Sh. Kalimullin; V. G. Puzarenko; M. Kh. Faizrakhmanov. Positive presentations of families in relation to reducibility with respect to enumerability. Algebra i logika, Tome 57 (2018) no. 4, pp. 492-498. http://geodesic.mathdoc.fr/item/AL_2018_57_4_a5/
[1] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[2] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, 2-oe izd., Nauchnaya kniga (NII MIOO NGU), Novosibirsk; Ekonomika, M., 2000 | MR
[3] I. Sh. Kalimullin, V. G. Puzarenko, “O printsipakh vychislimosti na dopustimykh mnozhestvakh”, Matem. tr., 7:2 (2004), 35–71 | MR | Zbl
[4] R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspect. Math. Log. Omega Series, Springer-Verlag 1987, Berlin etc. ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni. Izuchenie vychislimykh funktsii i vychislimo perechislimykh mnozhestv, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | Zbl
[5] S. S. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl
[6] S. A. Badaev, “O pozitivnykh numeratsiyakh”, Sib. matem. zh., 18:3 (1977), 483–496 | MR | Zbl
[7] S. S. Goncharov, S. Lempp, D. R. Solomon, “Fridbergovskie numeratsii semeistv $n$-vychislimo perechislimykh mnozhestv”, Algebra i logika, 41:2 (2002), 143–154 | MR | Zbl
[8] G. E. Sacks, Higher recursion theory, Perspect. Math. Log., Springer-Verlag, Berlin etc., 1990 | DOI | MR | Zbl
[9] J. C. Owings (jun.), “The meta-r.e. sets, but not the $\Pi^1_1$ sets, can be enumerated without repetition”, J. Symb. Log., 35:2 (1970), 223–229 | DOI | MR | Zbl