Some absolute properties of $A$-computable numberings
Algebra i logika, Tome 57 (2018) no. 4, pp. 426-447

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary set $A$ of natural numbers, we prove the following statements: every finite family of $A$-computable sets containing a least element under inclusion has an $A$-computable universal numbering; every infinite $A$-computable family of total functions has (up to $A$-equivalence) either one $A$-computable Friedberg numbering or infinitely many such numberings; every $A$-computable family of total functions which contains a limit function has no $A$-computable universal numberings, even with respect to $A$-reducibility.
Keywords: $A$-computable numbering, $A$-computable Friedberg numbering, $A$-computable universal numbering, $A$-reducibility.
@article{AL_2018_57_4_a1,
     author = {S. A. Badaev and A. A. Issakhov},
     title = {Some absolute properties of $A$-computable numberings},
     journal = {Algebra i logika},
     pages = {426--447},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_4_a1/}
}
TY  - JOUR
AU  - S. A. Badaev
AU  - A. A. Issakhov
TI  - Some absolute properties of $A$-computable numberings
JO  - Algebra i logika
PY  - 2018
SP  - 426
EP  - 447
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_4_a1/
LA  - ru
ID  - AL_2018_57_4_a1
ER  - 
%0 Journal Article
%A S. A. Badaev
%A A. A. Issakhov
%T Some absolute properties of $A$-computable numberings
%J Algebra i logika
%D 2018
%P 426-447
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_4_a1/
%G ru
%F AL_2018_57_4_a1
S. A. Badaev; A. A. Issakhov. Some absolute properties of $A$-computable numberings. Algebra i logika, Tome 57 (2018) no. 4, pp. 426-447. http://geodesic.mathdoc.fr/item/AL_2018_57_4_a1/