Some absolute properties of $A$-computable numberings
Algebra i logika, Tome 57 (2018) no. 4, pp. 426-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary set $A$ of natural numbers, we prove the following statements: every finite family of $A$-computable sets containing a least element under inclusion has an $A$-computable universal numbering; every infinite $A$-computable family of total functions has (up to $A$-equivalence) either one $A$-computable Friedberg numbering or infinitely many such numberings; every $A$-computable family of total functions which contains a limit function has no $A$-computable universal numberings, even with respect to $A$-reducibility.
Keywords: $A$-computable numbering, $A$-computable Friedberg numbering, $A$-computable universal numbering, $A$-reducibility.
@article{AL_2018_57_4_a1,
     author = {S. A. Badaev and A. A. Issakhov},
     title = {Some absolute properties of $A$-computable numberings},
     journal = {Algebra i logika},
     pages = {426--447},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_4_a1/}
}
TY  - JOUR
AU  - S. A. Badaev
AU  - A. A. Issakhov
TI  - Some absolute properties of $A$-computable numberings
JO  - Algebra i logika
PY  - 2018
SP  - 426
EP  - 447
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_4_a1/
LA  - ru
ID  - AL_2018_57_4_a1
ER  - 
%0 Journal Article
%A S. A. Badaev
%A A. A. Issakhov
%T Some absolute properties of $A$-computable numberings
%J Algebra i logika
%D 2018
%P 426-447
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_4_a1/
%G ru
%F AL_2018_57_4_a1
S. A. Badaev; A. A. Issakhov. Some absolute properties of $A$-computable numberings. Algebra i logika, Tome 57 (2018) no. 4, pp. 426-447. http://geodesic.mathdoc.fr/item/AL_2018_57_4_a1/

[1] S. A. Badaev, S. S. Goncharov, “O polureshetkakh Rodzhersa semeistv arifmeticheskikh mnozhestv”, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl

[2] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Ob elementarnykh teoriyakh polureshëtok Rodzhersa”, Algebra i logika, 44:3 (2005), 261–268 | MR | Zbl

[3] S. A. Badaev, S. S. Goncharov, A. Corbi, “Tipy izomorfizmov polureshëtok Rodzhersa semeistv iz razlichnykh urovnei arifmeticheskoi ierarkhii”, Algebra i logika, 45:6 (2006), 637–654 | MR | Zbl

[4] S. A. Badaev, S. S. Goncharov, “Obobschënno vychislimye universalnye numeratsii”, Algebra i logika, 53:5 (2014), 555–569 | MR

[5] S. A. Badaev, S. Yu. Podzorov, “Minimalnye nakrytiya v polureshetkakh Rodzhersa $\Sigma^0_n$-vychislimykh numeratsii”, Sib. matem. zh., 43:4 (2002), 769–778 | MR | Zbl

[6] S. S. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[7] S. Yu. Podzorov, “Nachalnye segmenty v polureshëtkakh Rodzhersa $\Sigma^0_n$-vychislimykh numeratsii”, Algebra i logika, 42:2 (2003), 211–226 | MR | Zbl

[8] S. Yu. Podzorov, “O predelnosti naibolshego elementa polureshëtki Rodzhersa”, Matem. tr., 7:2 (2004), 98–108 | MR | Zbl

[9] S. Yu. Podzorov, “O lokalnom stroenii polureshëtok Rodzhersa $\Sigma^0_n$-vychislimykh numeratsii”, Algebra i logika, 44:2 (2005), 148–172 | MR | Zbl

[10] M. Kh. Faizrakhmanov, “Universalnye obobschënno vychislimye numeratsii i giperimmunnost”, Algebra i logika, 56:4 (2017), 506–521 | DOI | MR | Zbl

[11] S. A. Badaev, S. S. Goncharov, “Theory of numberings: open problems”, Computability theory and its applications, Contemp. Math., 257, eds. P. Cholak et al., Am. Math. Soc., Providence, RI, 2000, 23–38 | DOI | MR | Zbl

[12] S. Badaev, S. Goncharov, “Computability and numberings”, New computational paradigms. Changing conceptions of what is computable, eds. S. B. Cooper et al., Springer-Verlag, New York, NY, 2008, 19–34 | MR | Zbl

[13] S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 45–77 | DOI | MR

[14] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | DOI | MR

[15] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977

[16] Yu. L. Ershov, “Theory of numberings”, Handbook of computability theory, Stud. Logic Found. Math., 140, ed. E. R. Griffor, Elsevier, Amsterdam, 1999, 473–503 | DOI | MR | Zbl

[17] S. S. Marchenkov, “O vychislimykh numeratsiyakh semeistv obscherekursivnykh funktsii”, Algebra i logika, 11:5 (1972), 588–607

[18] A. I. Maltsev, “Polno numerovannye mnozhestva”, Algebra i logika, 2:2 (1963), 4–29 | MR | Zbl

[19] A. I. Maltsev, “Pozitivnye i negativnye numeratsii”, Dokl. AN SSSR, 160:2 (1965), 278–280 | MR | Zbl

[20] Yu. L. Ershov, “Numeratsii semeistv obscherekursivnykh funktsii”, Sib. matem. zh., 8:5 (1967), 1015–1025

[21] A. A. Isakhov, “Idealy bez minimalnykh elementov v polureshëtkakh Rodzhersa”, Algebra i logika, 54:3 (2015), 305–314 | DOI | MR

[22] S. A. Badaev, “O vychislimykh numeratsiyakh semeistv obscherekursivnykh funktsii”, Algebra i logika, 16:2 (1977), 129–148 | MR | Zbl

[23] S. S. Goncharov, “Vychislimye odnoznachnye numeratsii”, Algebra i logika, 19:5 (1980), 507–551 | MR

[24] S. S. Goncharov, “Pozitivnye numeratsii semeistv s odnoznachnymi numeratsiyami”, Algebra i logika, 22:5 (1983), 481–488 | MR | Zbl

[25] S. S. Goncharov, “Semeistvo s edinstvennoi odnoznachnoi, no ne naimenshei numeratsiei”, Teoriya modelei i ee primeneniya, Trudy IM SO AN SSSR, 8, 1988, 42–58 | Zbl

[26] S. S. Goncharov, “Pozitivnye vychislimye numeratsii”, DAN, 332:2 (1993), 142–143 | MR | Zbl

[27] S. S. Goncharov, “A unique positive enumeration”, Siberian Adv. Math., 4:1 (1994), 52–64 | MR | Zbl

[28] Yu. D. Korolkov, “O semeistvakh obscherekursivnykh funktsii s konechnym chislom predelnykh tochek”, Algebra i logika, 17:2 (1978), 169–177 | MR | Zbl

[29] Yu. D. Korolkov, “O semeistvakh obscherekursivnykh funktsii bez izolirovannykh tochek”, Matem. zametki, 26:5 (1979), 747–755 | MR | Zbl

[30] Yu. D. Korolkov, “O svodimosti indeksnykh mnozhestv semeistv obscherekursivnykh funktsii”, Sib. matem. zh., 23:1 (1982), 190–193 | MR | Zbl