Categoricity for primitive recursive and polynomial Boolean algebras
Algebra i logika, Tome 57 (2018) no. 4, pp. 389-425.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a class $\mathbb K_\Sigma$ of primitive recursive structures whose existential diagram is decidable with primitive recursive witnesses. It is proved that a Boolean algebra has a presentation in $\mathbb K_\Sigma$ iff it has a computable presentation with computable set of atoms. Moreover, such a Boolean algebra is primitive recursively categorical with respect to $\mathbb K_\Sigma$ iff it has finitely many atoms. The obtained results can also be carried over to Boolean algebras computable in polynomial time.
Keywords: Boolean algebra, Boolean algebra computable in polynomial time, computable presentation, primitive recursively categorical Boolean algebra.
@article{AL_2018_57_4_a0,
     author = {P. E. Alaev},
     title = {Categoricity for primitive recursive and polynomial {Boolean} algebras},
     journal = {Algebra i logika},
     pages = {389--425},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_4_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Categoricity for primitive recursive and polynomial Boolean algebras
JO  - Algebra i logika
PY  - 2018
SP  - 389
EP  - 425
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_4_a0/
LA  - ru
ID  - AL_2018_57_4_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Categoricity for primitive recursive and polynomial Boolean algebras
%J Algebra i logika
%D 2018
%P 389-425
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_4_a0/
%G ru
%F AL_2018_57_4_a0
P. E. Alaev. Categoricity for primitive recursive and polynomial Boolean algebras. Algebra i logika, Tome 57 (2018) no. 4, pp. 389-425. http://geodesic.mathdoc.fr/item/AL_2018_57_4_a0/

[1] P. E. Alaev, “Suschestvovanie i edinstvennost struktur, vychislimykh za polinomialnoe vremya”, Algebra i logika, 55:1 (2016), 106–112 | DOI | MR | Zbl

[2] P. E. Alaev, “Struktury, vychislimye za polinomialnoe vremya. I”, Algebra i logika, 55:6 (2016), 647–669 | DOI | MR

[3] D. Cenzer, J. B. Remmel, “Complexity theoretic model theory and algebra”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, Recursive model theory, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 381–513 | DOI | MR | Zbl

[4] E. I. Latkin, “Polinomialnaya neavtoustoichivost. Algebraicheskii podkhod”, Logicheskie metody v programmirovanii, Vychisl. sist., 133, In-t matem. SO AN SSSR, Novosibirsk, 1990, 14–37 | MR

[5] I. Kalimullin, A. Melnikov, K. M. Ng, “Algebraic structures computable without delay”, Theoret. Comput. Sci., 674 (2017), 73–98 | DOI | MR | Zbl

[6] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl

[7] J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras”, J. Symb. Log., 46:3 (1981), 572–594 | DOI | MR | Zbl

[8] S. S. Goncharov, “Avtoustoichivost i vychislimye semeistva konstruktivizatsii”, Algebra i logika, 14:6 (1975), 647–680 | MR | Zbl

[9] D. Cenzer, J. Remmel, “Polynomial-time abelian groups”, Ann. Pure Appl. Logic, 56:1–3 (1992), 313–363 | DOI | MR | Zbl

[10] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR

[11] A. Akho, Dzh. Khopkroft, Dzh. Ulman, Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979

[12] S. S. Goncharov, “Nekotorye svoistva konstruktivizatsii bulevykh algebr”, Sib. matem. zh., 16:2 (1975), 264–278 | Zbl

[13] D. Cenzer, J. B. Remmel, “Complexity and categoricity”, Inf. Comput., 140:1 (1998), 2–25 | DOI | MR | Zbl

[14] D. Cenzer, J. Remmel, “Polynomial-time versus recursive models”, Ann. Pure Appl. Logic, 54:1 (1991) | DOI | MR | Zbl