Categoricity for primitive recursive and polynomial Boolean algebras
Algebra i logika, Tome 57 (2018) no. 4, pp. 389-425

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a class $\mathbb K_\Sigma$ of primitive recursive structures whose existential diagram is decidable with primitive recursive witnesses. It is proved that a Boolean algebra has a presentation in $\mathbb K_\Sigma$ iff it has a computable presentation with computable set of atoms. Moreover, such a Boolean algebra is primitive recursively categorical with respect to $\mathbb K_\Sigma$ iff it has finitely many atoms. The obtained results can also be carried over to Boolean algebras computable in polynomial time.
Keywords: Boolean algebra, Boolean algebra computable in polynomial time, computable presentation, primitive recursively categorical Boolean algebra.
@article{AL_2018_57_4_a0,
     author = {P. E. Alaev},
     title = {Categoricity for primitive recursive and polynomial {Boolean} algebras},
     journal = {Algebra i logika},
     pages = {389--425},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_4_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Categoricity for primitive recursive and polynomial Boolean algebras
JO  - Algebra i logika
PY  - 2018
SP  - 389
EP  - 425
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_4_a0/
LA  - ru
ID  - AL_2018_57_4_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Categoricity for primitive recursive and polynomial Boolean algebras
%J Algebra i logika
%D 2018
%P 389-425
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_4_a0/
%G ru
%F AL_2018_57_4_a0
P. E. Alaev. Categoricity for primitive recursive and polynomial Boolean algebras. Algebra i logika, Tome 57 (2018) no. 4, pp. 389-425. http://geodesic.mathdoc.fr/item/AL_2018_57_4_a0/