Projections of finite commutative rings with identity
Algebra i logika, Tome 57 (2018) no. 3, pp. 285-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

Associative rings $R$ and $R'$ are said to be lattice-isomorphic if their subring lattices $L(R)$ and $L(R')$ are isomorphic. An isomorphism of the lattice $L(R)$ onto the lattice $L(R')$ is called a projection (or a lattice isomorphism) of the ring $R$ onto the ring $R'$. A ring $R'$ is called the projective image of a ring $R$. We study lattice isomorphisms of finite commutative rings with identity. The objective is to specify sufficient conditions subject to which rings under lattice homomorphisms preserve the following properties: to be a commutative ring, to be a ring with identity, to be decomposable into a direct sum of ideals. We look into the question about the projective image of the Jacobson radical of a ring. In the first part, the previously obtained results on projections of finite commutative semiprime rings are supplemented with new information. Lattice isomorphisms of finite commutative rings decomposable into direct sums of fields and nilpotent ideals are taken up in the second part. Rings definable by their subring lattices are exemplified. Projections of finite commutative rings decomposable into direct sums of Galois rings and nilpotent ideals are considered in the third part. It is proved that the presence in a ring of a direct summand definable by its subring lattice (i.e., the Galois ring $GR(p^n,m)$, where $n>1$ and $m>1$) leads to strong connections between the properties of $R$ and $R'$.
Keywords: finite commutative rings with identity, subring lattices, lattice isomorphisms of rings.
@article{AL_2018_57_3_a2,
     author = {S. S. Korobkov},
     title = {Projections of finite commutative rings with identity},
     journal = {Algebra i logika},
     pages = {285--305},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_3_a2/}
}
TY  - JOUR
AU  - S. S. Korobkov
TI  - Projections of finite commutative rings with identity
JO  - Algebra i logika
PY  - 2018
SP  - 285
EP  - 305
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_3_a2/
LA  - ru
ID  - AL_2018_57_3_a2
ER  - 
%0 Journal Article
%A S. S. Korobkov
%T Projections of finite commutative rings with identity
%J Algebra i logika
%D 2018
%P 285-305
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_3_a2/
%G ru
%F AL_2018_57_3_a2
S. S. Korobkov. Projections of finite commutative rings with identity. Algebra i logika, Tome 57 (2018) no. 3, pp. 285-305. http://geodesic.mathdoc.fr/item/AL_2018_57_3_a2/

[1] S. S. Korobkov, “Reshetochnye izomorfizmy konechnykh kolets bez nilpotentnykh elementov”, Izv. Ural. gos. un-ta, 2002, no. 22, Matem. i mekhan. Kompyuter. n., vyp. 4, 81–93 | MR | Zbl

[2] S. S. Korobkov, “Proektirovaniya kolets Galua”, Algebra i logika, 54:1 (2015), 16–33 | DOI | MR | Zbl

[3] S. S. Korobkov, “Proektirovaniya konechnykh odnoporozhdënnykh kolets s edinitsei”, Algebra i logika, 55:2 (2016), 192–218 | DOI | MR | Zbl

[4] P. A. Freidman, S. S. Korobkov, “Assotsiativnye koltsa i ikh reshëtki podkolets”, Issledovanie algebraicheskikh sistem po svoistvam ikh podsistem, ed. P. A. Freidman, Ural. gos. ped. un-t, Ekaterinburg, 1998, 4–47

[5] S. S. Korobkov, “Proektirovaniya periodicheskikh nilkolets”, Izv. vuzov. Matem., 1980, no. 7, 30–38 | MR | Zbl

[6] S. S. Korobkov, “Periodicheskie koltsa s razlozhimymi v pryamoe proizvedenie reshetkami podkolets”, Issledovanie algebraicheskikh sistem po svoistvam ikh podsistem, ed. P. A. Freidman, Ural. gos. ped. un-t, Ekaterinburg, 1998, 48–59

[7] S. S. Korobkov, “Konechnye koltsa, soderzhaschie v tochnosti dva maksimalnykh podkoltsa”, Izv. vuzov. Matem., 2011, no. 6, 55–62 | MR | Zbl

[8] R. L. Kruse, D. T. Price, Nilpotent rings, Gordon and Breach Sci. Publ., New York–London–Paris, 1969 | MR | Zbl