Positive preorders
Algebra i logika, Tome 57 (2018) no. 3, pp. 279-284

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider positive preorders, i.e., computably enumerable equivalences, endowed with the structure of a partial order between equivalence classes. On positive preorders, a computable reducibility relation and the corresponding notion of degree of a positive preorder are introduced in the natural way. It is proved that the degree of any positive preorder contains either exactly one computable isomorphism class or an infinite set of computable isomorphism classes.
Keywords: computably enumerable equivalence, computable reducibility, computable isomorphism classes.
@article{AL_2018_57_3_a1,
     author = {D. K. Kabylzhanova},
     title = {Positive preorders},
     journal = {Algebra i logika},
     pages = {279--284},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_3_a1/}
}
TY  - JOUR
AU  - D. K. Kabylzhanova
TI  - Positive preorders
JO  - Algebra i logika
PY  - 2018
SP  - 279
EP  - 284
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_3_a1/
LA  - ru
ID  - AL_2018_57_3_a1
ER  - 
%0 Journal Article
%A D. K. Kabylzhanova
%T Positive preorders
%J Algebra i logika
%D 2018
%P 279-284
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_3_a1/
%G ru
%F AL_2018_57_3_a1
D. K. Kabylzhanova. Positive preorders. Algebra i logika, Tome 57 (2018) no. 3, pp. 279-284. http://geodesic.mathdoc.fr/item/AL_2018_57_3_a1/