Conjugacy of maximal and submaximal $\mathfrak X$-subgroups
Algebra i logika, Tome 57 (2018) no. 3, pp. 261-278

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak X$ be a class of finite groups closed under taking subgroups, homomorphic images, and extensions. Following H. Wielandt, we call a subgroup $H$ of a finite group $G$ a submaximal $\mathfrak X$-subgroup if there exists an isomorpic embedding $\phi\colon G\hookrightarrow G^*$ of the group $G$ into some finite group $G^*$ under which $G^\phi$ is subnormal in $G^*$ and $H^\phi=K\cap G^\phi$ for some maximal $\mathfrak X$-subgroup $K$ of $G^*$. We discuss the following question formulated by Wielandt: Is it always the case that all submaximal $\mathfrak X$-subgroups are conjugate in a finite group $G$ in which all maximal $\mathfrak X$-subgroups are conjugate? This question strengthens Wielandt's known problem of closedness for the class of $\mathscr D_\pi$-groups under extensions, which was solved some time ago. We prove that it is sufficient to answer the question mentioned for the case where $G$ is a simple group.
Keywords: finite group, maximal $\mathfrak X$-subgroup, submaximal $\mathfrak X$-subgroup, Hall $\pi$-subgroup, $\mathscr D_\pi$-property, $\mathscr D_\mathfrak X$-property.
@article{AL_2018_57_3_a0,
     author = {W. Guo and D. O. Revin},
     title = {Conjugacy of maximal and submaximal $\mathfrak X$-subgroups},
     journal = {Algebra i logika},
     pages = {261--278},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_3_a0/}
}
TY  - JOUR
AU  - W. Guo
AU  - D. O. Revin
TI  - Conjugacy of maximal and submaximal $\mathfrak X$-subgroups
JO  - Algebra i logika
PY  - 2018
SP  - 261
EP  - 278
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_3_a0/
LA  - ru
ID  - AL_2018_57_3_a0
ER  - 
%0 Journal Article
%A W. Guo
%A D. O. Revin
%T Conjugacy of maximal and submaximal $\mathfrak X$-subgroups
%J Algebra i logika
%D 2018
%P 261-278
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_3_a0/
%G ru
%F AL_2018_57_3_a0
W. Guo; D. O. Revin. Conjugacy of maximal and submaximal $\mathfrak X$-subgroups. Algebra i logika, Tome 57 (2018) no. 3, pp. 261-278. http://geodesic.mathdoc.fr/item/AL_2018_57_3_a0/