Some properties of Noetherian superschemes
Algebra i logika, Tome 57 (2018) no. 2, pp. 197-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some standard theorems on Noetherian schemes are generalized to the case of Noetherian superschemes.
Keywords: Noetherian scheme, Noetherian superscheme, quasicoherent sheaf, bosonization, superalgebra.
@article{AL_2018_57_2_a3,
     author = {A. N. Zubkov},
     title = {Some properties of {Noetherian} superschemes},
     journal = {Algebra i logika},
     pages = {197--213},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_2_a3/}
}
TY  - JOUR
AU  - A. N. Zubkov
TI  - Some properties of Noetherian superschemes
JO  - Algebra i logika
PY  - 2018
SP  - 197
EP  - 213
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_2_a3/
LA  - ru
ID  - AL_2018_57_2_a3
ER  - 
%0 Journal Article
%A A. N. Zubkov
%T Some properties of Noetherian superschemes
%J Algebra i logika
%D 2018
%P 197-213
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_2_a3/
%G ru
%F AL_2018_57_2_a3
A. N. Zubkov. Some properties of Noetherian superschemes. Algebra i logika, Tome 57 (2018) no. 2, pp. 197-213. http://geodesic.mathdoc.fr/item/AL_2018_57_2_a3/

[1] J. Brundan, “Modular representations of the supergroup $Q(n)$. II”, Pac. J. Math., 224:1 (2006), 65–90 | DOI | MR | Zbl

[2] A. Masuoka, A. N. Zubkov, “Solvability and nilpotency for algebraic supergroups”, J. Pure Appl. Algebra, 221:2 (2017), 339–365 | DOI | MR | Zbl

[3] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981

[4] F. Marko, A. N. Zubkov, “Pseudocompact algebras and highest weight categories”, Algebr. Represent. Theory, 16:3 (2013), 689–728 | DOI | MR | Zbl

[5] A. Masuoka, “The fundamental correspondences in super affine groups and super formal groups”, J. Pure Appl. Algebra, 202:1–3 (2005), 284–312 | DOI | MR | Zbl

[6] A. Masuoka, A. N. Zubkov, “Quotient sheaves of algebraic supergroups are superschemes”, J. Algebra, 348:1 (2011), 135–170 | DOI | MR | Zbl

[7] T. Y. Lam, Lectures on modules and rings, Grad. Texts Math., 189, Springer-Verlag, New York, NY, 1999 | DOI | MR | Zbl

[8] C. Carmeli, L. Caston, R. Fioresi, “Mathematical foundations of supersymmetry”, EMS Ser. Lect. Math., Eur. Math. Soc., Zürich, 2011 | MR | Zbl

[9] Yu. I. Manin, Gauge field theory and complex geometry, Grundlehren Math. Wiss., 289, 2nd ed., Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[10] M. Demazure, P. Gabriel, Algebraic groups, v. I, Algebraic geometry. Generalities. Commutative groups, Masson et Cie, Éditeur, Paris; North-Holland Publ. Co., Amsterdam, 1970 | MR | Zbl

[11] T. Schmitt, “Regular sequences in $\mathbb Z_2$-graded commutative algebra”, J. Algebra, 124:1 (1989), 60–118 | DOI | MR | Zbl