Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2018_57_2_a1, author = {N. A. Bazhenov and M. I. Marchuk}, title = {Degrees of autostability for prime {Boolean} algebras}, journal = {Algebra i logika}, pages = {149--174}, publisher = {mathdoc}, volume = {57}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2018_57_2_a1/} }
N. A. Bazhenov; M. I. Marchuk. Degrees of autostability for prime Boolean algebras. Algebra i logika, Tome 57 (2018) no. 2, pp. 149-174. http://geodesic.mathdoc.fr/item/AL_2018_57_2_a1/
[1] E. B. Fokina, I. Kalimullin, R. Miller, “Degrees of categoricity of computable structures”, Arch. Math. Logic, 49:1 (2010), 51–67 | DOI | MR | Zbl
[2] B. F. Csima, J. N. Y. Franklin, R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy”, Notre Dame J. Form. Log., 54:2 (2013), 215–231 | DOI | MR | Zbl
[3] S. S. Goncharov, “Stepeni avtoustoichivosti otnositelno silnykh konstruktivizatsii”, Algoritmicheskie voprosy algebry i logiki, K 80-letiyu so dnya rozhd. akad. S. I. Adyana, Tr. MIAN, 274, MAIK, M., 2011, 119–129 | MR
[4] R. Miller, “$d$-computable categoricity for algebraic fields” (4), J. Symb. Log., 74 (2009), 1325–1351 | DOI | MR | Zbl
[5] R. Miller, A. Shlapentokh, “Computable categoricity for algebraic fields with splitting algorithms”, Trans. Am. Math. Soc., 367:6 (2015), 3955–3980 | DOI | MR | Zbl
[6] E. Fokina, A. Frolov, I. Kalimullin, “Categoricity spectra for rigid structures”, Notre Dame J. Form. Log., 57:1 (2016), 45–57 | DOI | MR | Zbl
[7] N. A. Bazhenov, I. Sh. Kalimullin, M. M. Yamaleev, “O strogikh i nestrogikh stepenyakh kategorichnosti”, Algebra i logika, 55:2 (2016), 257–263 | DOI | MR | Zbl
[8] A. T. Nurtazin, “Silnye i slabye konstruktivizatsii i vychislimye semeistva”, Algebra i logika, 13:3 (1974), 311–323 | MR | Zbl
[9] N. Bazhenov, “Prime model with no degree of autostability relative to strong constructivizations”, Evolving computability, Proc. 11th conf. comput. Europe CiE 2015 (Bucharest, Romania, June 29 – July 3, 2015), Lect. Notes Comput. Sci., 9136, eds. A. Beckmann et al., Springer-Verlag, Berlin, 2015, 117–126 | DOI | MR | Zbl
[10] N. A. Bazhenov, “Spektry avtoustoichivosti bulevykh algebr”, Algebra i logika, 53:6 (2014), 764–769 | MR
[11] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl
[12] J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras”, J. Symb. Log., 46:3 (1981), 572–594 | DOI | MR | Zbl
[13] N. A. Bazhenov, “O $\Delta^0_2$-kategorichnosti bulevykh algebr”, Vestn. NGU. Ser. matem., mekh., inform., 13:2 (2013), 3–14 | Zbl
[14] N. A. Bazhenov, “Stepeni kategorichnosti superatomnykh bulevykh algebr”, Algebra i logika, 52:3 (2013), 271–283 | MR | Zbl
[15] D. E. Palchunov, A. V. Trofimov, A. I. Turko, “Avtoustoichivost bulevykh algebr s vydelennymi idealami otnositelno silnykh konstruktivizatsii”, Sib. matem. zh., 56:3 (2015), 617–628 | MR | Zbl
[16] N. A. Bazhenov, “O stepenyakh avtoustoichivosti otnositelno silnykh konstruktivizatsii dlya bulevykh algebr”, Algebra i logika, 55:2 (2016), 133–155 | MR | Zbl
[17] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR
[18] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl
[19] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B. V., Amsterdam etc., 2000 | MR | Zbl
[20] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999
[21] A. Tarski, “Arithmetical classes and types of Boolean algebras”, Bull. Am. Math. Soc., 55 (1949), 63
[22] Yu. L. Ershov, “Razreshimost elementarnoi teorii distributivnykh struktur s otnositelnymi dopolneniyami i teorii filtrov”, Algebra i logika, 3:3 (1964), 17–38 | Zbl
[23] J. B. Remmel, “Recursive Boolean algebras”, Handbook of Boolean algebras, v. 3, eds. J. D. Monk, R. Bonnet, North-Holland, Amsterdam etc., 1989 | MR | Zbl
[24] J. Mead, “Recursive prime models for Boolean algebras”, Colloq. Math., 41 (1979), 25–33 | DOI | MR | Zbl
[25] S. S. Goncharov, N. A. Bazhenov, M. I. Marchuk, “Indeksnoe mnozhestvo avtoustoichivykh otnositelno silnykh konstruktivizatsii bulevykh algebr”, Sib. matem. zh., 56:3 (2015), 498–512 | MR | Zbl
[26] C. Ash, J. Knight, M. Manasse, T. Slaman, “Generic copies of countable structures”, Ann. Pure Appl. Logic, 42:3 (1989), 195–205 | DOI | MR | Zbl
[27] J. Chisholm, “Effective model theory vs. recursive model theory”, J. Symb. Log., 55:3 (1990), 1168–1191 | DOI | MR | Zbl
[28] C. J. Ash, J. F. Knight, “Pairs of recursive structures”, Ann. Pure Appl. Logic, 46:3 (1990), 211–234 | DOI | MR | Zbl
[29] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980