The tensor completion functor in categories of exponential $MR$-groups
Algebra i logika, Tome 57 (2018) no. 2, pp. 137-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of an exponential $R$-group, where $R$ is an arbitrary associative ring with unity, was introduced by R. Lyndon. A. G. Myasnikov and V. N. Remeslennikov refined this notion by adding an extra axiom. In particular, the new notion of an exponential $MR$-group is an immediate generalization of the notion of an $R$-module to the case of noncommutative groups. Basic concepts in the theory of exponential $MR$-groups are presented, and we propose a particular method for constructing tensor completion – the key construction in the category of $MR$-groups. As a consequence, free $MR$-groups and free $MR$-products are described using the language of group constructions.
Keywords: Lyndon $R$-group, Hall $R$-group, $MR$-group, $\alpha$-commutator, tensor completion.
@article{AL_2018_57_2_a0,
     author = {M. G. Amaglobeli},
     title = {The tensor completion functor in categories of exponential $MR$-groups},
     journal = {Algebra i logika},
     pages = {137--148},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_2_a0/}
}
TY  - JOUR
AU  - M. G. Amaglobeli
TI  - The tensor completion functor in categories of exponential $MR$-groups
JO  - Algebra i logika
PY  - 2018
SP  - 137
EP  - 148
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_2_a0/
LA  - ru
ID  - AL_2018_57_2_a0
ER  - 
%0 Journal Article
%A M. G. Amaglobeli
%T The tensor completion functor in categories of exponential $MR$-groups
%J Algebra i logika
%D 2018
%P 137-148
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_2_a0/
%G ru
%F AL_2018_57_2_a0
M. G. Amaglobeli. The tensor completion functor in categories of exponential $MR$-groups. Algebra i logika, Tome 57 (2018) no. 2, pp. 137-148. http://geodesic.mathdoc.fr/item/AL_2018_57_2_a0/

[1] R. Lyndon, “Groups with parametric exponents”, Trans. Am. Math. Soc., 96 (1960), 518–533 | DOI | MR | Zbl

[2] A. G. Myasnikov, V. N. Remeslennikov, “Stepennye gruppy. I: osnovy teorii i tenzornye popolneniya”, Sib. matem. zh., 35:5 (1994), 1106–1118 | MR | Zbl

[3] M. G. Amaglobeli, V. N. Remeslennikov, “Svobodnye 2-stupenno nilpotentnye $R$-gruppy”, Dokl. RAN, 443:4 (2012), 410–413 | Zbl

[4] M. G. Amaglobeli, “On the permutability of a functor of tensor completion with principal group operations”, Appl. Math. Inform. Mech., 15:1 (2010), 3–10 | MR

[5] A. G. Myasnikov, V. N. Remeslennikov, “Exponential groups. II: Extensions of centralizers and tensor completion of CSA-groups”, Int. J. Algebra Comput., 6:6 (1996), 687–711 | DOI | MR | Zbl

[6] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Discriminating completions of hyperbolic groups”, Geom. Dedicata, 92 (2002), 115–143 | DOI | MR | Zbl

[7] M. G. Amaglobeli, V. N. Remeslennikov, “Rasshirenie tsentralizatora v nilpotentnykh gruppakh”, Sib. matem. zh., 54:1 (2013), 8–19 | MR | Zbl

[8] M. Amaglobeli, V. Remeslennikov, “Algorithmic problems for class-2 nilpotents $MR$-groups”, Georgian Math. J., 22:4 (2015), 441–449 | DOI | MR | Zbl

[9] M. G. Amaglobeli, V. N. Remeslennikov, “Osnovy teorii mnogoobrazii nilpotentnykh $MR$-grupp”, Sib. matem. zh., 57:6 (2016), 1197–1207 | MR | Zbl

[10] G. Baumslag, “Free abelian X-groups”, Ill. J. Math., 30 (1986), 235–245 | MR | Zbl

[11] A. G. Myasnikov, V. N. Remeslennikov, “Formulnost mnozhestva maltsevskikh baz i elementarnye svoistva konechnomernykh algebr. II”, Sib. matem. zh., 24:2 (1983), 97–113 | Zbl

[12] P. Hall, Nilpotent groups. Notes of lectures given at the CanadianMathematical Congress, Summer seminar (Univ. Alberta, Edmonton, 12–30 August, 1957), Queen Mary College Math. Notes, Queen Mary College (Univ. London), London, 1969 | MR

[13] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, Dover Books Adv. Math., 2nd rev. ed., Dover Publ., New York, 1976 | MR | Zbl