The tensor completion functor in categories of exponential $MR$-groups
Algebra i logika, Tome 57 (2018) no. 2, pp. 137-148

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of an exponential $R$-group, where $R$ is an arbitrary associative ring with unity, was introduced by R. Lyndon. A. G. Myasnikov and V. N. Remeslennikov refined this notion by adding an extra axiom. In particular, the new notion of an exponential $MR$-group is an immediate generalization of the notion of an $R$-module to the case of noncommutative groups. Basic concepts in the theory of exponential $MR$-groups are presented, and we propose a particular method for constructing tensor completion – the key construction in the category of $MR$-groups. As a consequence, free $MR$-groups and free $MR$-products are described using the language of group constructions.
Keywords: Lyndon $R$-group, Hall $R$-group, $MR$-group, $\alpha$-commutator, tensor completion.
@article{AL_2018_57_2_a0,
     author = {M. G. Amaglobeli},
     title = {The tensor completion functor in categories of exponential $MR$-groups},
     journal = {Algebra i logika},
     pages = {137--148},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_2_a0/}
}
TY  - JOUR
AU  - M. G. Amaglobeli
TI  - The tensor completion functor in categories of exponential $MR$-groups
JO  - Algebra i logika
PY  - 2018
SP  - 137
EP  - 148
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_2_a0/
LA  - ru
ID  - AL_2018_57_2_a0
ER  - 
%0 Journal Article
%A M. G. Amaglobeli
%T The tensor completion functor in categories of exponential $MR$-groups
%J Algebra i logika
%D 2018
%P 137-148
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_2_a0/
%G ru
%F AL_2018_57_2_a0
M. G. Amaglobeli. The tensor completion functor in categories of exponential $MR$-groups. Algebra i logika, Tome 57 (2018) no. 2, pp. 137-148. http://geodesic.mathdoc.fr/item/AL_2018_57_2_a0/