Periodic groups saturated with finite simple groups of Lie type of rank $1$
Algebra i logika, Tome 57 (2018) no. 1, pp. 118-125

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is saturated with groups from a set $\mathfrak R$ of groups if every finite subgroup of $G$ is contained in a subgroup of $G$ that is isomorphic to some group in $\mathfrak R$. Previously [Kourovka Notebook, Quest. 14.101], the question was posed whether a periodic group saturated with finite simple groups of Lie type whose ranks are bounded in totality is itself a simple group of Lie type. A partial answer to this question is given for groups of Lie type of rank $1$. We prove the following: Theorem. Let a periodic group $G$ be saturated with finite simple groups of Lie type of rank $1$. Then $G$ is isomorphic to a simple group of Lie type of rank $1$ over a suitable locally finite field.
Keywords: periodic group, group of Lie type
Mots-clés : simple group.
@article{AL_2018_57_1_a6,
     author = {A. A. Shlepkin},
     title = {Periodic groups saturated with finite simple groups of {Lie} type of rank~$1$},
     journal = {Algebra i logika},
     pages = {118--125},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_1_a6/}
}
TY  - JOUR
AU  - A. A. Shlepkin
TI  - Periodic groups saturated with finite simple groups of Lie type of rank $1$
JO  - Algebra i logika
PY  - 2018
SP  - 118
EP  - 125
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_1_a6/
LA  - ru
ID  - AL_2018_57_1_a6
ER  - 
%0 Journal Article
%A A. A. Shlepkin
%T Periodic groups saturated with finite simple groups of Lie type of rank $1$
%J Algebra i logika
%D 2018
%P 118-125
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_1_a6/
%G ru
%F AL_2018_57_1_a6
A. A. Shlepkin. Periodic groups saturated with finite simple groups of Lie type of rank $1$. Algebra i logika, Tome 57 (2018) no. 1, pp. 118-125. http://geodesic.mathdoc.fr/item/AL_2018_57_1_a6/