Periodic groups saturated with finite simple groups of Lie type of rank~$1$
Algebra i logika, Tome 57 (2018) no. 1, pp. 118-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is saturated with groups from a set $\mathfrak R$ of groups if every finite subgroup of $G$ is contained in a subgroup of $G$ that is isomorphic to some group in $\mathfrak R$. Previously [Kourovka Notebook, Quest. 14.101], the question was posed whether a periodic group saturated with finite simple groups of Lie type whose ranks are bounded in totality is itself a simple group of Lie type. A partial answer to this question is given for groups of Lie type of rank $1$. We prove the following: Theorem. Let a periodic group $G$ be saturated with finite simple groups of Lie type of rank $1$. Then $G$ is isomorphic to a simple group of Lie type of rank $1$ over a suitable locally finite field.
Keywords: periodic group, group of Lie type
Mots-clés : simple group.
@article{AL_2018_57_1_a6,
     author = {A. A. Shlepkin},
     title = {Periodic groups saturated with finite simple groups of {Lie} type of rank~$1$},
     journal = {Algebra i logika},
     pages = {118--125},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_1_a6/}
}
TY  - JOUR
AU  - A. A. Shlepkin
TI  - Periodic groups saturated with finite simple groups of Lie type of rank~$1$
JO  - Algebra i logika
PY  - 2018
SP  - 118
EP  - 125
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_1_a6/
LA  - ru
ID  - AL_2018_57_1_a6
ER  - 
%0 Journal Article
%A A. A. Shlepkin
%T Periodic groups saturated with finite simple groups of Lie type of rank~$1$
%J Algebra i logika
%D 2018
%P 118-125
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_1_a6/
%G ru
%F AL_2018_57_1_a6
A. A. Shlepkin. Periodic groups saturated with finite simple groups of Lie type of rank~$1$. Algebra i logika, Tome 57 (2018) no. 1, pp. 118-125. http://geodesic.mathdoc.fr/item/AL_2018_57_1_a6/

[1] A. K. Shlëpkin, “Sopryazhenno biprimitivno konechnye gruppy, soderzhaschie konechnye nerazreshimye podgruppy”, III mezhd. konf. po algebre pamyati M. I. Kargapolova, Sb. tez. (Krasnoyarsk, 23–28 avg. 1993), Krasnoyarsk, 1993, 369

[2] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 18-e izd., In-t matem. SO RAN, Novosibirsk, 2014 http://www.math.nsc.ru/~alglog/alglog.html

[3] J. L. Alperin, R. Brauer, D. Gorenstein, “Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups”, Trans. Am. Math. Soc., 151:1 (1970), 1–261 | MR | Zbl

[4] J. L. Alperin, R. Brauer, D. Gorenstein, “Finite simple groups of 2-rank two”, Scripta Math., 29:3–4 (1973), 191–214 | MR | Zbl

[5] D. V. Lytkina, A. A. Shlëpkin, Periodicheskie gruppy, nasyschennye lineinymi gruppami stepeni 2 i unitarnymi gruppami stepeni 3, v pechati

[6] K. A. Filippov, “O periodicheskikh gruppakh, nasyschennykh konechnymi prostymi gruppami”, Sib. matem. zh., 53:2 (2012), 430–438 | MR | Zbl

[7] D. V. Lytkina, L. R. Tukhvatulina, K. A. Filippov, “O periodicheskikh gruppakh, nasyschennykh konechnym mnozhestvom konechnykh prostykh grupp”, Sib. matem. zh., 49:2 (2008), 394–399 | MR | Zbl

[8] D. V. Lytkina, L. R. Tukhvatullina, K. A. Filippov, “Periodicheskie gruppy, nasyschennye konechnymi prostymi gruppami $U_3(2^m)$”, Algebra i logika, 47:3 (2008), 288–306 | MR | Zbl

[9] I. N. Sanov, “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uchen. zap. Leningr. gos. un-ta. Ser. matem., 1940, no. 10, 166–170 | MR | Zbl

[10] V. P. Shunkov, “Ob odnom klasse $p$-grupp”, Algebra i logika, 9:4 (1970), 484–496 | MR

[11] B. Li, D. V. Lytkina, “O silovskikh 2-podgruppakh periodicheskikh grupp, nasyschennykh konechnymi prostymi gruppami”, Sib. matem. zh., 57:6 (2016), 1313–1319 | DOI | MR | Zbl

[12] D. V. Lytkina, “Periodicheskie gruppy, nasyschennye pryamymi proizvedeniyami konechnykh prostykh grupp. II”, Sib. matem. zh., 52:5 (2011), 1096–1112 | MR | Zbl