Centralizer dimensions of partially commutative metabelian groups
Algebra i logika, Tome 57 (2018) no. 1, pp. 102-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an upper bound for the centralizer dimension of a partially commutative metabelian group that depends linearly on the number of vertices in a defining graph. It is proved that centralizer dimensions of $2$-generated metabelian groups are not bounded above. The exact value of the centralizer dimension is computed for a partially commutative metabelian group defined by a cycle.
Keywords: partially commutative metabelian group, centralizer dimension, defining graph.
@article{AL_2018_57_1_a5,
     author = {E. I. Timoshenko},
     title = {Centralizer dimensions of partially commutative metabelian groups},
     journal = {Algebra i logika},
     pages = {102--117},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_1_a5/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Centralizer dimensions of partially commutative metabelian groups
JO  - Algebra i logika
PY  - 2018
SP  - 102
EP  - 117
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_1_a5/
LA  - ru
ID  - AL_2018_57_1_a5
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Centralizer dimensions of partially commutative metabelian groups
%J Algebra i logika
%D 2018
%P 102-117
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_1_a5/
%G ru
%F AL_2018_57_1_a5
E. I. Timoshenko. Centralizer dimensions of partially commutative metabelian groups. Algebra i logika, Tome 57 (2018) no. 1, pp. 102-117. http://geodesic.mathdoc.fr/item/AL_2018_57_1_a5/

[1] A. Myasnikov, P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | MR | Zbl

[2] A. J. Duncan, I. V. Kazachkov, V. N. Remeslennikov, “Centraliser dimension and universal classes of groups”, Sib. elektron. matem. izv., 3 (2006), 197–215 | MR | Zbl

[3] A. J. Duncan, I. V. Kazachkov, V. N. Remeslennikov, “Centraliser dimension of partially commutative groups”, Geom. Dedicata, 120 (2006), 73–97 | DOI | MR | Zbl

[4] E. I. Timoshenko, “Tsentralizatornye razmernosti i universalnye teorii chastichno kommutativnykh metabelevykh grupp”, Algebra i logika, 56:2 (2017), 226–255 | DOI | MR

[5] Ch. K. Gupta, E. I. Timoshenko, “Chastichno kommutativnye metabelevy gruppy: tsentralizatory i elementarnaya ekvivalentnost”, Algebra i logika, 48:3 (2009), 309–341 | MR | Zbl

[6] E. I. Timoshenko, “Universalnaya ekvivalentnost chastichno kommutativnykh metabelevykh grupp”, Algebra i logika, 49:2 (2010), 263–290 | MR | Zbl

[7] Ch. K. Gupta, E.I. Timoshenko, “Ob universalnykh teoriyakh chastichno kommutativnykh metabelevykh grupp”, Algebra i logika, 50:1 (2011), 3–25 | MR | Zbl

[8] A. A. Mischenko, A. V. Treier, “Struktura tsentralizatorov dlya chastichno kommutativnoi dvustupenno nilpotentnoi $Q$-gruppy”, Vest. Omsk. gos. un-ta, 2007, spets. vypusk, 98–102

[9] E. I. Timoshenko, Endomorfizmy i universalnye teorii razreshimykh grupp, Izd-vo NGTU, Novosibirsk, 2013