Centralizer dimensions of partially commutative metabelian groups
Algebra i logika, Tome 57 (2018) no. 1, pp. 102-117

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish an upper bound for the centralizer dimension of a partially commutative metabelian group that depends linearly on the number of vertices in a defining graph. It is proved that centralizer dimensions of $2$-generated metabelian groups are not bounded above. The exact value of the centralizer dimension is computed for a partially commutative metabelian group defined by a cycle.
Keywords: partially commutative metabelian group, centralizer dimension, defining graph.
@article{AL_2018_57_1_a5,
     author = {E. I. Timoshenko},
     title = {Centralizer dimensions of partially commutative metabelian groups},
     journal = {Algebra i logika},
     pages = {102--117},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_1_a5/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Centralizer dimensions of partially commutative metabelian groups
JO  - Algebra i logika
PY  - 2018
SP  - 102
EP  - 117
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_1_a5/
LA  - ru
ID  - AL_2018_57_1_a5
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Centralizer dimensions of partially commutative metabelian groups
%J Algebra i logika
%D 2018
%P 102-117
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_1_a5/
%G ru
%F AL_2018_57_1_a5
E. I. Timoshenko. Centralizer dimensions of partially commutative metabelian groups. Algebra i logika, Tome 57 (2018) no. 1, pp. 102-117. http://geodesic.mathdoc.fr/item/AL_2018_57_1_a5/