Rationality of verbal subsets in solvable groups
Algebra i logika, Tome 57 (2018) no. 1, pp. 57-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A verbal subset of a group $G$ is a set $w[G]$ of all values of a group word $w$ in this group. We consider the question whether verbal subsets of solvable groups are rational in the sense of formal language theory. It is proved that every verbal subset $w[N]$ of a finitely generated nilpotent group $N$ with respect to a word w with positive exponent is rational. Also we point out examples of verbal subsets of finitely generated metabelian groups that are not rational.
Mots-clés : solvable group
Keywords: verbal subset, verbal subgroup, rational set, formal language.
@article{AL_2018_57_1_a3,
     author = {V. A. Roman'kov},
     title = {Rationality of verbal subsets in solvable groups},
     journal = {Algebra i logika},
     pages = {57--72},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_1_a3/}
}
TY  - JOUR
AU  - V. A. Roman'kov
TI  - Rationality of verbal subsets in solvable groups
JO  - Algebra i logika
PY  - 2018
SP  - 57
EP  - 72
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_1_a3/
LA  - ru
ID  - AL_2018_57_1_a3
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%T Rationality of verbal subsets in solvable groups
%J Algebra i logika
%D 2018
%P 57-72
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_1_a3/
%G ru
%F AL_2018_57_1_a3
V. A. Roman'kov. Rationality of verbal subsets in solvable groups. Algebra i logika, Tome 57 (2018) no. 1, pp. 57-72. http://geodesic.mathdoc.fr/item/AL_2018_57_1_a3/

[1] A. Myasnikov, V. Roman'kov, “On rationality of verbal subsets in a group”, Theory Comput. Syst., 52:4 (2013), 587–598 | DOI | MR | Zbl

[2] R. H. Gilman, “Formal languages and infinite groups”, Geometric and computational perspectives on infinite groups, Proc. of a joint DIMACS/Geometry Center workshop (January 3–14, 1994, Univ. Minnesota, Minneapolis, MN, USA; March 17–20, 1994, DIMACS, Princeton, NJ, USA), DIMACS, Ser. Discrete Math. Theor. Comput. Sci., 25, eds. G. Baumslag et al., Am. Math. Soc., Providence, RI, 1996, 27–51 | DOI | MR | Zbl

[3] V. A. Romankov, Ratsionalnye podmnozhestva v gruppakh, Izd-vo Om. gos. un-ta, Omsk, 2014

[4] H. Neumann, Varieties of groups, Ergebn. Math. Grenzg., 37, Springer-Verlag, Berlin–Heidelberg–New York, 1967

[5] D. Segal, Words: notes on verbal width in groups, London Math. Soc. Lect. Notes Ser., 361, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl

[6] V. A. Roman'kov, “Equations over groups”, Groups Complex. Cryptol., 4:2 (2012), 191–239 | MR | Zbl

[7] A. W. Anissimow, F. D. Seifert, “Zur algebraischen Charakteristik der durch kontext-freie Sprachen definierten Gruppen”, Elektron. Inform.-verarb. Kybernetik, 11 (1975), 695–702 | MR | Zbl

[8] P. Hall, Nilpotent groups, Notes of lectures given at the Canadian Mathematical Congress, summer seminar (University of Alberta, Edmonton, 12–30 August, 1957), Queen Mary College Math. Notes, Queen Mary College (Univ. London), London, 1969 | MR | Zbl

[9] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR

[10] S. Moran, J. Williams, “Completions of certain nilpotent groups”, J. Aust. Math. Soc. Ser. A, 28 (1979), 461–470 | DOI | MR | Zbl

[11] V. A. Romankov, “O shirine verbalnykh podgrupp razreshimykh grupp”, Algebra i logika, 21:1 (1982), 60–72 | MR | Zbl