Divisible rigid groups.~II. Stability, saturation, and elementary submodels
Algebra i logika, Tome 57 (2018) no. 1, pp. 43-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is said to be rigid if it contains a normal series $$ G=G_1>G_2>\dots>G_m>G_{m+1}=1, $$ whose quotients $G_i/G_{i+1}$ are Abelian and, treated as right $\mathbb Z[G/G_i]$-modules, are torsion-free. A rigid group $G$ is divisible if elements of the quotient $G_i/G_{i+1}$ are divisible by nonzero elements of the ring $\mathbb Z[G/G_i]$. Every rigid group is embedded in a divisible one. Previously, it was stated that the theory $\mathfrak T_m$ of divisible $m$-rigid groups is complete. Here, it is proved that this theory is $\omega$-stable. Furthermore, we describe saturated models, study elementary submodels of an arbitrary model, and find a representation for a countable saturated model in the form of a limit group in the Fraïssé system of all finitely generated $m$-rigid groups. Also, it is proved that the theory $\mathfrak T_m$ admits quantifier elimination down to a Boolean combination of $\forall\exists$-formulas.
Mots-clés : divisible rigid group, saturation
Keywords: theory, model, stability, $\forall\exists$-formula.
@article{AL_2018_57_1_a2,
     author = {A. G. Myasnikov and N. S. Romanovskii},
     title = {Divisible rigid {groups.~II.} {Stability,} saturation, and elementary submodels},
     journal = {Algebra i logika},
     pages = {43--56},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_1_a2/}
}
TY  - JOUR
AU  - A. G. Myasnikov
AU  - N. S. Romanovskii
TI  - Divisible rigid groups.~II. Stability, saturation, and elementary submodels
JO  - Algebra i logika
PY  - 2018
SP  - 43
EP  - 56
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_1_a2/
LA  - ru
ID  - AL_2018_57_1_a2
ER  - 
%0 Journal Article
%A A. G. Myasnikov
%A N. S. Romanovskii
%T Divisible rigid groups.~II. Stability, saturation, and elementary submodels
%J Algebra i logika
%D 2018
%P 43-56
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_1_a2/
%G ru
%F AL_2018_57_1_a2
A. G. Myasnikov; N. S. Romanovskii. Divisible rigid groups.~II. Stability, saturation, and elementary submodels. Algebra i logika, Tome 57 (2018) no. 1, pp. 43-56. http://geodesic.mathdoc.fr/item/AL_2018_57_1_a2/

[1] N. S. Romanovskii, “Delimye zhëstkie gruppy. Algebraicheskaya zamknutost i elementarnaya teoriya”, Algebra i logika, 56:5 (2017), 593–612 | DOI | MR

[2] A. Myasnikov, N. Romanovskiy, “Krull dimension of solvable groups”, J. Algebra, 324:10 (2010), 2814–2831 | DOI | MR | Zbl

[3] N. S. Romanovskii, “Delimye zhëstkie gruppy”, Algebra i logika, 47:6 (2008), 762–776 | MR | Zbl

[4] A. G. Myasnikov, N. S. Romanovskii, “Ob universalnykh teoriyakh zhëstkikh razreshimykh grupp”, Algebra i logika, 50:6 (2011), 802–821 | MR | Zbl

[5] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011 | MR