Maximal and submaximal $\mathfrak X$-subgroups
Algebra i logika, Tome 57 (2018) no. 1, pp. 14-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak X$ be a class of finite groups closed under taking subgroups, homomorphic images, and extensions. Following H. Wielandt, we call a subgroup $H$ of a finite group $G$ a submaximal $\mathfrak X$-subgroup if there exists an isomorphic embedding $\phi\colon G\hookrightarrow G^*$ of $G$ into some finite group $G^*$ under which $G^\phi$ is subnormal in $G^*$ and $H^\phi=K\cap G^\phi$ for some maximal $\mathfrak X$-subgroup $K$ of $G^*$. In the case where $\mathfrak X$ coincides with the class of all $\pi$-groups for some set $\pi$ of prime numbers, submaximal $\mathfrak X$-subgroups are called submaximal $\pi$-subgroups. In his talk at the well-known conference on finite groups in Santa Cruz in 1979, Wielandt emphasized the importance of studying submaximal $\pi$-subgroups, listed (without proof) certain of their properties, and formulated a number of open questions regarding these subgroups. Here we prove properties of maximal and submaximal $\mathfrak X$- and $\pi$-subgroups and discuss some open questions both Wielandt’s and new ones. One of such questions due to Wielandt reads as follows: Is it always the case that all submaximal $\mathfrak X$-subgroups are conjugate in a finite group $G$ in which all maximal $\mathfrak X$-subgroups are conjugate?
Keywords: finite group, maximal $\mathfrak X$-subgroup, submaximal $\mathfrak X$-subgroup, Hall $\pi$-subgroup, $\mathscr D_\pi$-property.
@article{AL_2018_57_1_a1,
     author = {W. Guo and D. O. Revin},
     title = {Maximal and submaximal $\mathfrak X$-subgroups},
     journal = {Algebra i logika},
     pages = {14--42},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2018_57_1_a1/}
}
TY  - JOUR
AU  - W. Guo
AU  - D. O. Revin
TI  - Maximal and submaximal $\mathfrak X$-subgroups
JO  - Algebra i logika
PY  - 2018
SP  - 14
EP  - 42
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2018_57_1_a1/
LA  - ru
ID  - AL_2018_57_1_a1
ER  - 
%0 Journal Article
%A W. Guo
%A D. O. Revin
%T Maximal and submaximal $\mathfrak X$-subgroups
%J Algebra i logika
%D 2018
%P 14-42
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2018_57_1_a1/
%G ru
%F AL_2018_57_1_a1
W. Guo; D. O. Revin. Maximal and submaximal $\mathfrak X$-subgroups. Algebra i logika, Tome 57 (2018) no. 1, pp. 14-42. http://geodesic.mathdoc.fr/item/AL_2018_57_1_a1/