Mots-clés : polygons, $(P,1)$-stable polygons.
@article{AL_2017_56_6_a4,
author = {D. O. Ptakhov},
title = {Polygons with a {(P,} 1)-stable theory},
journal = {Algebra i logika},
pages = {712--720},
year = {2017},
volume = {56},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2017_56_6_a4/}
}
D. O. Ptakhov. Polygons with a (P, 1)-stable theory. Algebra i logika, Tome 56 (2017) no. 6, pp. 712-720. http://geodesic.mathdoc.fr/item/AL_2017_56_6_a4/
[1] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl
[2] M. A. Rusaleev, “Kharakterizatsiya $(p,1)$-stabilnykh teorii”, Algebra i logika, 46:3 (2007), 346–359 | MR | Zbl
[3] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011 | MR
[4] G. Keisler, Ch. Chen, Teoriya modelei, Mir, M., 1977 | MR
[5] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories. With applications to wreath products and graphs, A handbook for students and researchers, de Gruyter Expo. Math., 29, Walter de Gruyter, Berlin, 2000 | MR
[6] A. Yu. Avdeyev, I. B. Kozhukhov, “Acts over completely 0-simple semigroups”, Acta Cybern., 14:4 (2000), 523–531 | MR