Nonpresentability of some structures of analysis in hereditarily finite superstructures
Algebra i logika, Tome 56 (2017) no. 6, pp. 691-711.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any countable consistent theory with infinite models has a $\Sigma$-presentable model of cardinality $2^\omega$ over $\mathbb{HF(R})$. It is shown that some structures studied in analysis (in particular, a semigroup of continuous functions, certain structures of nonstandard analysis, and infinite-dimensional separable Hilbert spaces) have no simple $\Sigma$-presentations in hereditarily finite superstructures over existentially Steinitz structures. The results are proved by a unified method on the basis of a new general sufficient condition.
Keywords: $\Sigma$-presentability, countable consistent theory, hereditarily finite superstructure, existentially Steinitz structure, semigroup of continuous functions, nonstandard analysis, infinite-dimensional separable Hilbert space.
@article{AL_2017_56_6_a3,
     author = {A. S. Morozov},
     title = {Nonpresentability of some structures of analysis in hereditarily finite superstructures},
     journal = {Algebra i logika},
     pages = {691--711},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_6_a3/}
}
TY  - JOUR
AU  - A. S. Morozov
TI  - Nonpresentability of some structures of analysis in hereditarily finite superstructures
JO  - Algebra i logika
PY  - 2017
SP  - 691
EP  - 711
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_6_a3/
LA  - ru
ID  - AL_2017_56_6_a3
ER  - 
%0 Journal Article
%A A. S. Morozov
%T Nonpresentability of some structures of analysis in hereditarily finite superstructures
%J Algebra i logika
%D 2017
%P 691-711
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_6_a3/
%G ru
%F AL_2017_56_6_a3
A. S. Morozov. Nonpresentability of some structures of analysis in hereditarily finite superstructures. Algebra i logika, Tome 56 (2017) no. 6, pp. 691-711. http://geodesic.mathdoc.fr/item/AL_2017_56_6_a3/

[1] B. Khoussainov, A. Nerode, “Automatic presentations of structures”, Logical and computational complexity, Int. workshop, LCC'94 (Indianapolis, IN, USA, October 13–16, 1994), Sel. papers, Lect. Notes Comput. Sci., 960, ed. D. Leivant, Springer-Verlag, Berlin, 1995, 367–392 | DOI | MR

[2] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[3] Yu. L. Ershov, “$\Sigma$-definability of algebraic structures”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, Recursive model theory, eds. Y. L. Ershov et al., Elsevier Science B. V., Amsterdam, 1998, 235–260 | DOI | MR

[4] A. Nies, A. Montalban, “Borel structures: a brief survey”, Effective mathematics of the uncountable, Lect. Notes Log., 41, eds. N. Greenberg et al., Cambridge Univ. Press, Cambridge; Assoc. Symb. Log. (ASL), Ithaca, NY, 2013, 124–134 | MR

[5] A. S. Morozov, “Elementarnye podmodeli parametrizuemykh modelei”, Sib. matem. zh., 47:3 (2006), 595–612 | MR | Zbl

[6] A. S. Morozov, “Ob odnom dostatochnom uslovii nepredstavimosti struktur v nasledstvenno konechnykh nadstroikakh”, Algebra i logika, 55:3 (2016), 366–379 | DOI | MR

[7] J. Barwise, “Admissible sets and structures. An approach to definability theory”, Perspec. Math. Logic, Springer-Velag, Berlin, 1975 | DOI | MR

[8] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR

[9] A. S. Morozov, “O nekotorykh predstavleniyakh polya veschestvennykh chisel”, Algebra i logika, 51:1 (2012), 96–128 | MR | Zbl

[10] A. S. Morozov, M. V. Korovina, “O $\Sigma$-opredelimosti schëtnykh struktur nad veschestvennymi, kompleksnymi chislami i kvaternionami”, Algebra i logika, 47:3 (2008), 335–363 | MR | Zbl

[11] D. Marker, Model theory: an introduction, Grad. Texts Math., 217, Springer-Verlag, New York etc., 2002 | MR

[12] H. A. Kierstead, J. B. Remmel, “Degrees of indiscernibles in decidable models”, Trans. Am. Math. Soc., 289:1 (1985), 41–57 | DOI | MR

[13] G. Metakides, A. Nerode, “Recursion theory on fields and abstract dependence”, J. Algebra, 65 (1980), 36–59 | DOI | MR

[14] Yu. L. Ershov, V. G. Puzarenko, A. I. Stukachev, “HF-Computability”, Computability in context. Computation and logic in the real world, eds. S. B. Cooper et al., Imperial College Press, London, 2011, 169–242 | DOI | MR

[15] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR