Pronormality of Hall subgroups in their normal closure
Algebra i logika, Tome 56 (2017) no. 6, pp. 682-690.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that for any set $\pi$ of prime numbers, the following assertions are equivalent: (1) in any finite group, $\pi$-Hall subgroups are conjugate; (2) in any finite group, $\pi$-Hall subgroups are pronormal. It is proved that (1) and (2) are equivalent also to the following: (3) in any finite group, $\pi$-Hall subgroups are pronormal in their normal closure. Previously [Unsolved Problems in Group Theory, The Kourovka Notebook, 18th edn., Institute of Mathematics SO RAN, Novosibirsk (2014), Quest. 18.32], the question was posed whether it is true that in a finite group, $\pi$-Hall subgroups are always pronormal in their normal closure. Recently, M. N. Nesterov [Sib. El. Mat. Izv., 12 (2015), 1032–1038] proved that assertion (3) and assertions (1) and (2) are equivalent for any finite set $\pi$. The fact that there exist examples of finite sets $\pi$ and finite groups $G$ such that $G$ contains more than one conjugacy class of $\pi$-Hall subgroups gives a negative answer to the question mentioned. Our main result shows that the requirement of finiteness for $\pi$ is unessential for (1), (2), and (3) to be equivalent.
Keywords: $\pi$-Hall subgroup, normal closure, pronormal subgroup.
@article{AL_2017_56_6_a2,
     author = {E. P. Vdovin and M. N. Nesterov and D. O. Revin},
     title = {Pronormality of {Hall} subgroups in their normal closure},
     journal = {Algebra i logika},
     pages = {682--690},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_6_a2/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - M. N. Nesterov
AU  - D. O. Revin
TI  - Pronormality of Hall subgroups in their normal closure
JO  - Algebra i logika
PY  - 2017
SP  - 682
EP  - 690
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_6_a2/
LA  - ru
ID  - AL_2017_56_6_a2
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A M. N. Nesterov
%A D. O. Revin
%T Pronormality of Hall subgroups in their normal closure
%J Algebra i logika
%D 2017
%P 682-690
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_6_a2/
%G ru
%F AL_2017_56_6_a2
E. P. Vdovin; M. N. Nesterov; D. O. Revin. Pronormality of Hall subgroups in their normal closure. Algebra i logika, Tome 56 (2017) no. 6, pp. 682-690. http://geodesic.mathdoc.fr/item/AL_2017_56_6_a2/

[1] E. P. Vdovin, D. O. Revin, “Teoremy silovskogo tipa”, Uspekhi matem. nauk, 66:5 (401), 3–46 | DOI | MR | Zbl

[2] E. P. Vdovin, D. O. Revin, “Suschestvovanie pronormalnykh $\pi$-khollovykh podgrupp v $E_\pi$-gruppakh”, Sib. matem. zh., 56:3 (2015), 481–486 | DOI | MR

[3] E. P. Vdovin, D. O. Revin, “O pronormalnosti khollovykh podgrupp”, Sib. matem. zh., 54:1 (2013), 35–43 | MR

[4] V. Go, D. O. Revin, “O klasse grupp s pronormalnymi $\pi$-khollovymi podgruppami”, Sib. matem. zh., 55:3 (2014), 509–524 | MR

[5] E. P. Vdovin, D. O. Revin, “Pronormalnost khollovykh podgrupp v konechnykh prostykh gruppakh”, Sib. matem. zh., 53:3 (2012), 527–542 | MR

[6] E. P. Vdovin, D. O. Revin, “O pronormalnosti i silnoi pronormalnosti podgrupp”, Algebra i logika, 52:1 (2013), 22–33 | MR | Zbl

[7] M. N. Nesterov, “Pronormalnost khollovykh podgrupp v pochti prostykh gruppakh”, Sib. elektron. matem. izv., 12 (2015), 1032–1038 http://semr.math.nsc.ru/v12/p1032-1038.pdf | DOI

[8] M. N. Nesterov, “O pronormalnosti i silnoi pronormalnosti khollovykh podgrupp”, Sib. matem. zh., 58:1 (2017), 165–173 | DOI | MR

[9] E. P. Vdovin, D. O. Revin, “Kriterii abnormalnosti dlya $p$-dopolnenii”, Algebra i logika, 55:5 (2016), 531–539 | DOI | MR

[10] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 18-e izd., In-t matem. SO RAN, Novosibirsk, 2014 http://www.math.nsc.ru/~alglog/18kt.pdf

[11] F. Gross, “Conjugacy of odd order Hall subgroups”, Bull. Lond. Math. Soc., 19:4 (1987), 311–319 | DOI | MR

[12] I. M. Isaacs, “Irreducible products of characters”, J. Algebra, 223:2 (2000), 630–646 | DOI | MR

[13] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR

[14] M. Aschbacher, Finite group theory, Cambridge Stud. Adv. Math., 10, Cambridge Univ. Press, Cambridge, 1986 | MR

[15] M. D. Hestenes, “Singer groups”, Can. J. Math., 22:3 (1970), 492–513 | DOI | MR