Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2017_56_6_a0, author = {P. E. Alaev}, title = {Structures computable in polynomial {time.~II}}, journal = {Algebra i logika}, pages = {651--670}, publisher = {mathdoc}, volume = {56}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2017_56_6_a0/} }
P. E. Alaev. Structures computable in polynomial time.~II. Algebra i logika, Tome 56 (2017) no. 6, pp. 651-670. http://geodesic.mathdoc.fr/item/AL_2017_56_6_a0/
[1] P. E. Alaev, “Struktury, vychislimye za polinomialnoe vremya. I”, Algebra i logika, 55:6 (2016), 647–669 | MR
[2] S. S. Goncharov, “Problema chisla neavtoekvivalentnykh konstruktivizatsii”, Algebra i logika, 19:6 (1980), 621–639 | MR
[3] J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras”, J. Symb. Log., 46:3 (1981), 572–594 | DOI | MR
[4] J. B. Remmel, “Recursively categorical linear orderings”, Proc. Am. Math. Soc., 83:2 (1981), 387–391 | DOI | MR
[5] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR
[6] P. E. Alaev, “Suschestvovanie i edinstvennost struktur, vychislimykh za polinomialnoe vremya”, Algebra i logika, 55:1 (2016), 106–112 | MR
[7] D. Cenzer, J. B. Remmel, “Complexity and categoricity”, Inf. Comput., 140:1 (1998), 2–25 | DOI | MR
[8] E. I. Latkin, “Polinomialnaya neavtoustoichivost. Algebraicheskii podkhod”, Logicheskie metody v programmirovanii, Vychisl. sist., 133, In-t matem. SO AN SSSR, Novosibirsk, 1990, 14–37 | MR
[9] S. S. Goncharov, “Algoritmicheskaya razmernost abelevykh grupp”, Tez. soobschenii XVII Vsesoyuz. algebr. konf. (Minsk, 14–17 sentyabrya 1983 g.), ch. 2
[10] B. M. Khusainov, “Ob algoritmicheskoi razmernosti unarov”, Algebra i logika, 27:4 (1988), 479–494 | MR
[11] O. V. Kudinov, “Algebraicheskie zavisimosti i svodimosti konstruktivizatsii v universalnykh oblastyakh”, Matematicheskaya logika i teoriya algoritmov, Tr. IM SO RAN, 25, Novosibirsk, Nauka, 74–81 http://math.nsc.ru/journals/ti/25/ti_25_004.pdf | MR
[12] S. T. Fedoryaev, “Schëtnost shiriny struktury algebraicheskoi svodimosti dlya modelei nekotorykh klassov”, Matematicheskaya logika i teoriya algoritmov, Tr. IM SO RAN, 25, Nauka, Novosibirsk, 1993, 133–154 http://math.nsc.ru/journals/ti/25/ti_25_007.pdf | MR
[13] S. T. Fedoryaev, “Rekursivno nesovmestnye algoritmicheskie problemy na 1-konstruktiviziruemykh distributivnykh reshetkakh s otnositelnymi dopolneniyami”, Algebra i logika, 34:6 (1995), 667–680 | MR
[14] V. A. Uspenskii, A. L. Semenov, “Teoriya algoritmov: osnovnye otkrytiya i prilozheniya”, Algoritmy v sovremennoi matematike i ee prilozheniyakh, Mater. mezhd. simp. (Urgench, UzSSR, 1979), ch. 1, VTs SO AN SSSR, Novosibirsk, 1982, 99–342
[15] V. A. Uspenskii, A. L. Semenov, Teoriya algoritmov: osnovnye otkrytiya i prilozheniya, B-chka programmista, Nauka, M., 1987 | MR
[16] S. T. Fedoryaev, “Konstruktiviziruemye modeli s lineinoi strukturoi algebraicheskoi svodimosti”, Matem. zametki, 48:6 (1990), 106–111 | MR | Zbl
[17] S. T. Fedoryaev, “Nekotorye svoistva algebraicheskoi svodimosti konstruktivizatsii”, Algebra i logika, 29:5 (1990), 597–612 | MR
[18] D. Cenzer, J. Remmel, “Polynomial-time versus recursive models”, Ann. Pure Appl. Logic, 54:1 (1991), 17–58 | DOI | MR
[19] M. Moses, “Relations intrinsically recursive in linear orders”, Z. Math. Logik Grundlagen Math., 32:5 (1986), 467–472 | DOI | MR
[20] A. G. Pinus, “Ob uslovnykh termakh i tozhdestvakh na universalnykh algebrakh”, Strukturnye algoritmicheskie svoistva vychislimosti, Vychisl. sist., 156, In-t matem. SO RAN, Novosibirsk, 1996, 59–78
[21] A. G. Pinus, “Vnutrennie gomomorfizmy i pozitivno-uslovnye termy”, Algebra i logika, 40:2 (2001), 158–173 | MR | Zbl