Divisible rigid groups. Algebraic closedness and elementary theory
Algebra i logika, Tome 56 (2017) no. 5, pp. 593-612

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is said to be rigid if it contains a normal series $$ G=G_1>G_2>\dots>G_m>G_{m+1}=1, $$ whose quotients $G_i/G_{i+1}$ are Abelian and, treated as right $\mathbb Z[G/G_i]$-modules, are torsion-free. A rigid group $G$ is divisible if elements of the quotient $G_i/G_{i+1}$ are divisible by nonzero elements of the ring $\mathbb Z[G/G_i]$. Every rigid group is embedded in a divisible one. We prove two theorems. THEOREM 1. The following three conditions for a group $G$ are equivalent: $G$ is algebraically closed in the class $\Sigma_m$ of all $m$-rigid groups; $G$ is existentially closed in the class $\Sigma_m$; $G$ is a divisible $m$-rigid group. THEOREM 2. The elementary theory of a class of divisible $m$-rigid groups is complete.
Mots-clés : divisible rigid group
Keywords: algebraic closedness, elementary theory.
@article{AL_2017_56_5_a4,
     author = {N. S. Romanovskii},
     title = {Divisible rigid groups. {Algebraic} closedness and elementary theory},
     journal = {Algebra i logika},
     pages = {593--612},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_5_a4/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Divisible rigid groups. Algebraic closedness and elementary theory
JO  - Algebra i logika
PY  - 2017
SP  - 593
EP  - 612
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_5_a4/
LA  - ru
ID  - AL_2017_56_5_a4
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Divisible rigid groups. Algebraic closedness and elementary theory
%J Algebra i logika
%D 2017
%P 593-612
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_5_a4/
%G ru
%F AL_2017_56_5_a4
N. S. Romanovskii. Divisible rigid groups. Algebraic closedness and elementary theory. Algebra i logika, Tome 56 (2017) no. 5, pp. 593-612. http://geodesic.mathdoc.fr/item/AL_2017_56_5_a4/