Divisible rigid groups. Algebraic closedness and elementary theory
Algebra i logika, Tome 56 (2017) no. 5, pp. 593-612.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is said to be rigid if it contains a normal series $$ G=G_1>G_2>\dots>G_m>G_{m+1}=1, $$ whose quotients $G_i/G_{i+1}$ are Abelian and, treated as right $\mathbb Z[G/G_i]$-modules, are torsion-free. A rigid group $G$ is divisible if elements of the quotient $G_i/G_{i+1}$ are divisible by nonzero elements of the ring $\mathbb Z[G/G_i]$. Every rigid group is embedded in a divisible one. We prove two theorems. THEOREM 1. The following three conditions for a group $G$ are equivalent: $G$ is algebraically closed in the class $\Sigma_m$ of all $m$-rigid groups; $G$ is existentially closed in the class $\Sigma_m$; $G$ is a divisible $m$-rigid group. THEOREM 2. The elementary theory of a class of divisible $m$-rigid groups is complete.
Mots-clés : divisible rigid group
Keywords: algebraic closedness, elementary theory.
@article{AL_2017_56_5_a4,
     author = {N. S. Romanovskii},
     title = {Divisible rigid groups. {Algebraic} closedness and elementary theory},
     journal = {Algebra i logika},
     pages = {593--612},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_5_a4/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Divisible rigid groups. Algebraic closedness and elementary theory
JO  - Algebra i logika
PY  - 2017
SP  - 593
EP  - 612
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_5_a4/
LA  - ru
ID  - AL_2017_56_5_a4
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Divisible rigid groups. Algebraic closedness and elementary theory
%J Algebra i logika
%D 2017
%P 593-612
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_5_a4/
%G ru
%F AL_2017_56_5_a4
N. S. Romanovskii. Divisible rigid groups. Algebraic closedness and elementary theory. Algebra i logika, Tome 56 (2017) no. 5, pp. 593-612. http://geodesic.mathdoc.fr/item/AL_2017_56_5_a4/

[1] A. Myasnikov, N. Romanovskiy, “Krull dimension of solvable groups”, J. Algebra, 324:10 (2010), 2814–2831 | DOI | MR | Zbl

[2] N. S. Romanovskii, “Delimye zhëstkie gruppy”, Algebra i logika, 47:6 (2008), 762–776 | MR | Zbl

[3] A. G. Myasnikov, N. S. Romanovskii, “Ob universalnykh teoriyakh zhëstkikh razreshimykh grupp”, Algebra i logika, 50:6 (2011), 802–821 | MR | Zbl

[4] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279 | MR | Zbl

[5] Ch. K. Gupta, N. S. Romanovskii, “Nëterovost po uravneniyam nekotorykh razreshimykh grupp”, Algebra i logika, 46:1 (2007), 46–59 | MR | Zbl

[6] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhëstkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR | Zbl

[7] N. S. Romanovskii, “Koproizvedeniya zhëstkikh grupp”, Algebra i logika, 49:6 (2010), 803–818 | MR

[8] Yu. V. Kuzmin, “Vlozhenie Magnusa kak chastnyi sluchai odnoi gomologicheskoi konstruktsii”, Matem. zametki, 79:4 (2006), 571–576 | DOI | MR | Zbl

[9] N. S. Romanovskii, “Rasscheplenie gruppy nad abelevoi normalnoi podgruppoi”, Algebra i logika, 55:4 (2016), 478–492 | DOI | Zbl

[10] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR

[11] I. Lewin, “A note on zero divisors in group-rings”, Proc. Am. Math. Soc., 31:2 (1972), 357–359 | DOI | MR | Zbl

[12] P. H. Kropholler, P. A. Linnell, J. A. Moody, “Applications of a new $K$-theoretic theorem on soluble group rings”, Proc. Am. Math. Soc., 104:3 (1988), 675–684 | MR | Zbl

[13] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[14] D. Marker, Model theory: an introduction, Grad. Texts Math., 217, Springer-Verlag, New York etc., 2002 | MR | Zbl