Strong decidability and strong recognizability
Algebra i logika, Tome 56 (2017) no. 5, pp. 559-581.

Voir la notice de l'article provenant de la source Math-Net.Ru

Extensions of Johansson's minimal logic J are considered. It is proved that families of negative and nontrivial logics and a series of other families are strongly decidable over J. This means that, given any finite list $Rul$ of axiom schemes and rules of inference, we can effectively verify whether the logic with axioms and schemes, $J+Rul$, belongs to a given family. Strong recognizability over J is proved for known logics Neg, Gl, and KC as well as for logics LC and NC and all their extensions.
Keywords: minimal logic, decidability, strong decidability, recognizable logic
Mots-clés : Johansson algebra, admissible rule.
@article{AL_2017_56_5_a2,
     author = {L. L. Maksimova and V. F. Yun},
     title = {Strong decidability and strong recognizability},
     journal = {Algebra i logika},
     pages = {559--581},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_5_a2/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - Strong decidability and strong recognizability
JO  - Algebra i logika
PY  - 2017
SP  - 559
EP  - 581
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_5_a2/
LA  - ru
ID  - AL_2017_56_5_a2
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T Strong decidability and strong recognizability
%J Algebra i logika
%D 2017
%P 559-581
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_5_a2/
%G ru
%F AL_2017_56_5_a2
L. L. Maksimova; V. F. Yun. Strong decidability and strong recognizability. Algebra i logika, Tome 56 (2017) no. 5, pp. 559-581. http://geodesic.mathdoc.fr/item/AL_2017_56_5_a2/

[1] I. Johansson, “Der Minimalkalk?ul, ein reduzierter intuitionistischer Formalismus”, Compos. Math., 4 (1937), 119–136 | MR

[2] A. V. Kuznetsov, “O nerazreshimosti obschikh problem polnoty, razresheniya i ekvivalentnosti dlya ischislenii vyskazyvanii”, Algebra i logika, 2:4 (1963), 47–66 | Zbl

[3] A. Chagrov, M. Zakharyaschev, Modal logics, Oxford Logic Guides, 35, Clarendon Press, Oxford, 1997 | MR

[4] D. M. Gabbay, L. Maksimova, Interpolation and definability: modal and intuitionistic logics, Oxford Logic Guides, 46, Oxford Sci. Publ., Clarendon Press, Oxford, 2005 | MR | Zbl

[5] L. Maksimova, “Strongly decidable properties of modal and intuitionistic calculi”, Log. J. IGPL, 8:6 (2000), 797–819 | DOI | MR | Zbl

[6] L. L. Maksimova, V. F. Yun, “Uznavaemye logiki”, Algebra i logika, 54:2 (2015), 252–274 | DOI | MR | Zbl

[7] A. V. Chagrov, “Nerazreshimye svoistva superintuitsionistskikh logik”, Matematicheskie voprosy kibernetiki, 5, ed. S. V. Yablonskii, Fizmatlit, M., 1994, 62–108

[8] S. Odintsov, V. Rybakov, “Unification and admissible rules for paraconsistent minimal Johanssons' logic J and positive intuitionistic logic IPC+”, Ann. Pure Appl. Logic, 164:7/8 (2013), 771–784 | DOI | MR | Zbl

[9] V. V. Rybakov, Admissibility of logical inference rules, Stud. Logic Found. Math., 136, Elsevier Sci. Publ. B.V., Amsterdam, 1997 | MR | Zbl

[10] S. P. Odintsov, Constructive negations and paraconsistency, Trends Log. Stud. Log. Libr., 26, Springer-Verlag, Dordrecht, 2008 | MR | Zbl

[11] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warszawa, 1963 ; E. Raseva, R. Sikorskii, Matematika metamatematiki, Nauka, M., 1972 | MR | MR

[12] W. Rautenberg, Klassische und nichtklassische Aussagenlogik, Logik Grundlagen Math., 22, Friedr. Vieweg Sohn., Braunschweig/Wiesbaden, 1979 | MR | Zbl

[13] A. I. Tsitkin, “O strukturalno polnykh superintuitsionistskikh logikakh”, Dokl. AN SSSR, 241:1 (1978), 40–43 | MR | Zbl

[14] L. L. Maksimova, “Negativnaya ekvivalentnost nad minimalnoi logikoi i interpolyatsiya”, Sib. elektron. matem. izv., 11 (2014), 1–17 http://semr.math.nsc.ru/v11/p1-17.pdf | Zbl

[15] J. M. Dunn, R. K. Meyer, “Algebraic completeness result for Dummett's LC and its extensions”, Z. Math. Logik Grundlagen Math., 17 (1971), 225–230 | DOI | MR | Zbl