Strong decidability and strong recognizability
Algebra i logika, Tome 56 (2017) no. 5, pp. 559-581

Voir la notice de l'article provenant de la source Math-Net.Ru

Extensions of Johansson's minimal logic J are considered. It is proved that families of negative and nontrivial logics and a series of other families are strongly decidable over J. This means that, given any finite list $Rul$ of axiom schemes and rules of inference, we can effectively verify whether the logic with axioms and schemes, $J+Rul$, belongs to a given family. Strong recognizability over J is proved for known logics Neg, Gl, and KC as well as for logics LC and NC and all their extensions.
Keywords: minimal logic, decidability, strong decidability, recognizable logic
Mots-clés : Johansson algebra, admissible rule.
@article{AL_2017_56_5_a2,
     author = {L. L. Maksimova and V. F. Yun},
     title = {Strong decidability and strong recognizability},
     journal = {Algebra i logika},
     pages = {559--581},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_5_a2/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - Strong decidability and strong recognizability
JO  - Algebra i logika
PY  - 2017
SP  - 559
EP  - 581
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_5_a2/
LA  - ru
ID  - AL_2017_56_5_a2
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T Strong decidability and strong recognizability
%J Algebra i logika
%D 2017
%P 559-581
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_5_a2/
%G ru
%F AL_2017_56_5_a2
L. L. Maksimova; V. F. Yun. Strong decidability and strong recognizability. Algebra i logika, Tome 56 (2017) no. 5, pp. 559-581. http://geodesic.mathdoc.fr/item/AL_2017_56_5_a2/