The Specht property of $L$-varieties of vector spaces
Algebra i logika, Tome 56 (2017) no. 5, pp. 548-558

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are explored which imply the finite basis property for identities of vector spaces embedded in associative algebras over an infinite field. An $L$-variety having no finite basis of identities, which is the join of two Spechtian $L$-varieties, is exemplified.
Keywords: identity of vector space, basis of identities, $L$-variety, Spechtian $L$-variety, locally Spechtian $L$-variety.
@article{AL_2017_56_5_a1,
     author = {A. V. Kislitsin},
     title = {The {Specht} property of $L$-varieties of vector spaces},
     journal = {Algebra i logika},
     pages = {548--558},
     publisher = {mathdoc},
     volume = {56},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_5_a1/}
}
TY  - JOUR
AU  - A. V. Kislitsin
TI  - The Specht property of $L$-varieties of vector spaces
JO  - Algebra i logika
PY  - 2017
SP  - 548
EP  - 558
VL  - 56
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_5_a1/
LA  - ru
ID  - AL_2017_56_5_a1
ER  - 
%0 Journal Article
%A A. V. Kislitsin
%T The Specht property of $L$-varieties of vector spaces
%J Algebra i logika
%D 2017
%P 548-558
%V 56
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_5_a1/
%G ru
%F AL_2017_56_5_a1
A. V. Kislitsin. The Specht property of $L$-varieties of vector spaces. Algebra i logika, Tome 56 (2017) no. 5, pp. 548-558. http://geodesic.mathdoc.fr/item/AL_2017_56_5_a1/