Mots-clés : automorphism group
@article{AL_2017_56_5_a0,
author = {V. G. Bardakov and M. V. Neshchadim},
title = {A~representation of virtual braids by automorphisms},
journal = {Algebra i logika},
pages = {539--547},
year = {2017},
volume = {56},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2017_56_5_a0/}
}
V. G. Bardakov; M. V. Neshchadim. A representation of virtual braids by automorphisms. Algebra i logika, Tome 56 (2017) no. 5, pp. 539-547. http://geodesic.mathdoc.fr/item/AL_2017_56_5_a0/
[1] L. H. Kauffman, “Virtual knot theory”, Eur. J. Comb., 20:7 (1999), 663–690 | DOI | MR | Zbl
[2] V. V. Vershinin, “On homology of virtual braids and Burau representation”, J. Knot Theory Raminifications, 10:5 (2001), 795–812 | DOI | MR | Zbl
[3] J. S. Birman, Braids, links, and mapping class groups, Based on lecture notes by James Cannon, Ann. Math. Stud., 82, Princeton Univ. Press, Univ. Tokyo Press, Princeton, N.J., 1975 | MR | Zbl
[4] V. G. Bardakov, Yu. A. Mikhalchishina, M. V. Neshchadim, Representations of virtual braids by automorphisms and virtual knot groups, arXiv: 1603.01425 | MR
[5] A. A. Markov, Osnovy algebraicheskoi teorii kos, Tr. matem. in-ta im. V. A. Steklova, 16, Izd-vo AN SSSR, M.–L., 1945, 54 pp. | MR | Zbl
[6] V. G. Bardakov, “The virtual and universal braids”, Fundam. Math., 181 (2004), 1–18 | DOI | MR