Universal generalized computable numberings and hyperimmunity
Algebra i logika, Tome 56 (2017) no. 4, pp. 506-521.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized computable numberings relative to hyperimmune and high oracles are studied. We give a description of oracles relative to which every finite computable family has a universal computable numbering. Also we present a characterization of the class of oracles relative to which every universal computable numbering of an arbitrary finite family is precomplete, and establish a sufficient condition for generalized computable numberings to be precomplete. In addition, we look into the question on boundedness of universal numberings computable relative to high oracles.
Keywords: generalized computable numbering, universal numbering, precomplete numbering, hyperimmune set, high set.
@article{AL_2017_56_4_a7,
     author = {M. Kh. Faizrakhmanov},
     title = {Universal generalized computable numberings and hyperimmunity},
     journal = {Algebra i logika},
     pages = {506--521},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_4_a7/}
}
TY  - JOUR
AU  - M. Kh. Faizrakhmanov
TI  - Universal generalized computable numberings and hyperimmunity
JO  - Algebra i logika
PY  - 2017
SP  - 506
EP  - 521
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_4_a7/
LA  - ru
ID  - AL_2017_56_4_a7
ER  - 
%0 Journal Article
%A M. Kh. Faizrakhmanov
%T Universal generalized computable numberings and hyperimmunity
%J Algebra i logika
%D 2017
%P 506-521
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_4_a7/
%G ru
%F AL_2017_56_4_a7
M. Kh. Faizrakhmanov. Universal generalized computable numberings and hyperimmunity. Algebra i logika, Tome 56 (2017) no. 4, pp. 506-521. http://geodesic.mathdoc.fr/item/AL_2017_56_4_a7/

[1] S. S. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[2] S. A. Badaev, S. S. Goncharov, “Theory of numberings: open problems”, Computability theory and its applications, Contemp. Math., 257, eds. P. Cholak et al., Am. Math. Soc., Providence, RI, 2000, 23–38 | DOI | MR | Zbl

[3] S. A. Badaev, S. S. Goncharov, A. Sorbi, “Completeness and universality of arithmetical numberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 11–44 | DOI | MR

[4] S. Yu. Podzorov, “O predelnosti naibolshego elementa polureshëtki Rodzhersa”, Matem. tr., 7:2 (2004), 98–108 | MR | Zbl

[5] S. Badaev, S. Goncharov, “Computability and numberings”, New computational paradigms. Changing conceptions of what is computable, eds. S. B. Cooper et al., Springer-Verlag, New York, NY, 2008, 19–34 | MR | Zbl

[6] S. A. Badaev, S. S. Goncharov, “Obobschënno vychislimye universalnye numeratsii”, Algebra i logika, 53:5 (2014), 555–569 | MR

[7] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[8] Yu. L. Ershov, “Theory of numberings”, Handbook of computability theory, Stud. Logic Found. Math., 140, ed. E. R. Griffor, Elsevier, Amsterdam, 1999, 473–503 | DOI | MR | Zbl

[9] R. I. Soare, Recursively enumerable sets and degrees, Perspect. Math. Log. Omega Series, Springer-Verlag, Heidelberg a.o., 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | DOI | MR | Zbl | MR

[10] S. A. Badaev, A. A. Isakhov, “Ob $A$-vychislimykh numeratsiyakh”, Mezhd. konf “Maltsevskie chteniya”, posvyasch. 75-letiyu Yu. L. Ershova (Novosibirsk, 3–7 maya 2015 g.), Tez. dokl., IM SO RAN i NGU, Novosibirsk, 2015, 61

[11] A. I. Maltsev, “Polno numerovannye mnozhestva”, Algebra i logika, 2:2 (1963), 4–29 | MR | Zbl

[12] C. G. Jockusch (jun.), “Degrees in which the recursive sets are uniformly recursive”, Can. J. Math., 24:6 (1972), 1092–1099 | DOI | MR | Zbl