$P$-stable polygons
Algebra i logika, Tome 56 (2017) no. 4, pp. 486-505
Voir la notice de l'article provenant de la source Math-Net.Ru
$P$-stable polygons are studied. It is proved that the property of being $(P,s)$-, $(P,a)$-, and $(P,e)$-stable for the class of all polygons over a monoid $S$ is equivalent to $S$ being a group. We describe the structure of $(P,s)$-, $(P,a)$-, and $(P,e)$-stable polygons $SA$ over a countable left-zero monoid $S$ under the condition that the set $A\setminus SA$ is indiscernible over a right-zero monoid.
Keywords:
$P$-stable theories
Mots-clés : polygons, $P$-stable polygons.
Mots-clés : polygons, $P$-stable polygons.
@article{AL_2017_56_4_a6,
author = {A. A. Stepanova and D. O. Ptakhov},
title = {$P$-stable polygons},
journal = {Algebra i logika},
pages = {486--505},
publisher = {mathdoc},
volume = {56},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2017_56_4_a6/}
}
A. A. Stepanova; D. O. Ptakhov. $P$-stable polygons. Algebra i logika, Tome 56 (2017) no. 4, pp. 486-505. http://geodesic.mathdoc.fr/item/AL_2017_56_4_a6/