$P$-stable polygons
Algebra i logika, Tome 56 (2017) no. 4, pp. 486-505.

Voir la notice de l'article provenant de la source Math-Net.Ru

$P$-stable polygons are studied. It is proved that the property of being $(P,s)$-, $(P,a)$-, and $(P,e)$-stable for the class of all polygons over a monoid $S$ is equivalent to $S$ being a group. We describe the structure of $(P,s)$-, $(P,a)$-, and $(P,e)$-stable polygons $SA$ over a countable left-zero monoid $S$ under the condition that the set $A\setminus SA$ is indiscernible over a right-zero monoid.
Keywords: $P$-stable theories
Mots-clés : polygons, $P$-stable polygons.
@article{AL_2017_56_4_a6,
     author = {A. A. Stepanova and D. O. Ptakhov},
     title = {$P$-stable polygons},
     journal = {Algebra i logika},
     pages = {486--505},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_4_a6/}
}
TY  - JOUR
AU  - A. A. Stepanova
AU  - D. O. Ptakhov
TI  - $P$-stable polygons
JO  - Algebra i logika
PY  - 2017
SP  - 486
EP  - 505
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_4_a6/
LA  - ru
ID  - AL_2017_56_4_a6
ER  - 
%0 Journal Article
%A A. A. Stepanova
%A D. O. Ptakhov
%T $P$-stable polygons
%J Algebra i logika
%D 2017
%P 486-505
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_4_a6/
%G ru
%F AL_2017_56_4_a6
A. A. Stepanova; D. O. Ptakhov. $P$-stable polygons. Algebra i logika, Tome 56 (2017) no. 4, pp. 486-505. http://geodesic.mathdoc.fr/item/AL_2017_56_4_a6/

[1] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl

[2] E. A. Palyutin, “$P$-stabilnye abelevy gruppy”, Algebra i logika, 52:5 (2013), 606–631 | MR | Zbl

[3] M. A. Rusaleev, “Kharakterizatsiya $(p,1)$-stabilnykh teorii”, Algebra i logika, 46:3 (2007), 346–359 | MR | Zbl

[4] D. O. Ptakhov, “Poligony s $(P,1)$-stabilnoi teoriei”, Algebra i logika (to appear)

[5] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011 | MR

[6] G. Keisler, Ch. Chen, Teoriya modelei, Mir, M., 1977 | MR

[7] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories. With applications to wreath products and graphs, A handbook for students and researchers, de Gruyter Expo. Math., 29, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[8] A. Yu. Avdeyev, I. B. Kozhukhov, “Acts over completely 0-simple semigroups”, Acta Cybern., 14:4 (2000), 523–531 | MR | Zbl