Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2017_56_4_a4, author = {R. A. Kornev}, title = {Reducibility of computable metrics on the real line}, journal = {Algebra i logika}, pages = {453--476}, publisher = {mathdoc}, volume = {56}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2017_56_4_a4/} }
R. A. Kornev. Reducibility of computable metrics on the real line. Algebra i logika, Tome 56 (2017) no. 4, pp. 453-476. http://geodesic.mathdoc.fr/item/AL_2017_56_4_a4/
[1] M. B. Pour-El, J. I. Richards, Computability in analysis and physics, Perspect. Math. Logic, Springer-Verlag, Berlin etc., 1989 | DOI | MR | Zbl
[2] Z. Iljazović, “Isometries and computability structures”, J. UCS, 16:18 (2010), 2569–2596 | MR | Zbl
[3] A. G. Melnikov, “Computably isometric spaces”, J. Symb. Log., 78:4 (2013), 1055–1085 | DOI | MR | Zbl
[4] A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem”, Proc. Lond. Math. Soc. II Ser., 42 (1936), 230–265 | MR | Zbl
[5] A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem. A correction”, Proc. Lond. Math. Soc. II Ser., 43 (1937), 544–546 | MR | Zbl
[6] N. A. Shanin, “Konstruktivnye veschestvennye chisla i konstruktivnye funktsionalnye prostranstva”, Problemy konstruktivnogo napravleniya v matematike. 2. Konstruktivnyi matematicheskii analiz, Tr. MIAN SSSR, 67, izd-vo AN SSSR, M.–L., 1962, 15–294 | MR | Zbl
[7] Y. N. Moschovakis, “Recursive metric spaces”, Fundam. Math., 55 (1964), 215–238 | DOI | MR | Zbl
[8] Ch. Kreitz, K. Weihrauch, “Theory of representations”, Theor. Comput. Sci., 38 (1985), 35–53 | DOI | MR | Zbl
[9] K. Weihrauch, “Computability on computable metric spaces”, Theor. Comput. Sci., 113:2 (1993), 191–210 | DOI | MR | Zbl
[10] K. Weihrauch, Computable analysis. An introduction, Texts Theoret. Comput. Sci. EATCS Ser., Springer, Berlin, 2000 | DOI | MR | Zbl
[11] R. Dillhage, Computable functional analysis. Compact operators on computable Banach spaces and computable best approximation, PhD Thesis, Fak. Math. Inform., FernUniversität Hagen, 2012
[12] M. A. Khamsi, W. A. Kirk, An introduction to metric spaces and fixed point theory, Pure Appl. Math. (Hoboken), John Wiley Sons, NJ, 2001 | MR | Zbl