Generic G\"odel's incompleteness theorem
Algebra i logika, Tome 56 (2017) no. 3, pp. 348-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

Gödel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be derived from the axioms of formal arithmetic. Previously [Sib. El. Mat. Izv., 12 (2015), 185–189], it was proved that formal arithmetic remains incomplete if, instead of the set of all arithmetic statements, we consider any set of some class of “almost all” statements (a class of socalled strongly generic subsets). This result is strengthened as follows: formal arithmetic is incomplete for any generic subset of arithmetic statements (i.e., a subset of asymptotic density 1).
Keywords: Gödel’s theorem, formal arithmetic, generic subsets of arithmetic statements.
@article{AL_2017_56_3_a3,
     author = {A. N. Rybalov},
     title = {Generic {G\"odel's} incompleteness theorem},
     journal = {Algebra i logika},
     pages = {348--353},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_3_a3/}
}
TY  - JOUR
AU  - A. N. Rybalov
TI  - Generic G\"odel's incompleteness theorem
JO  - Algebra i logika
PY  - 2017
SP  - 348
EP  - 353
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_3_a3/
LA  - ru
ID  - AL_2017_56_3_a3
ER  - 
%0 Journal Article
%A A. N. Rybalov
%T Generic G\"odel's incompleteness theorem
%J Algebra i logika
%D 2017
%P 348-353
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_3_a3/
%G ru
%F AL_2017_56_3_a3
A. N. Rybalov. Generic G\"odel's incompleteness theorem. Algebra i logika, Tome 56 (2017) no. 3, pp. 348-353. http://geodesic.mathdoc.fr/item/AL_2017_56_3_a3/

[1] K. Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. I”, Monatshefte f. Math., 38 (1931), 173–198 | DOI | MR | Zbl

[2] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, “Generic-case complexity, decision problems in group theory, and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl

[3] A. N. Rybalov, “Genericheskaya nepolnota formalnoi arifmetiki”, Sib. elektron. matem. izv., 12 (2015), 185–189 | DOI | MR | Zbl

[4] A. N. Rybalov, “O genericheskoi slozhnosti elementarnykh teorii”, Vest. Om. un-ta, 2015, no. 4, 14–17