Constants of partial derivations and primitive operations
Algebra i logika, Tome 56 (2017) no. 3, pp. 317-347

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe algebras of constants of the set of all partial derivations in free algebras of unitarily closed varieties over a field of characteristic 0. These constants are also called eigenpolynomials. It is proved that a subalgebra of eigenpolynomials coincides with the subalgebra generated by values of commutators and Umirbaev–Shestakov primitive elements $p_{m,n}$ on a set of generators for a free algebra. The space of primitive elements is a linear algebraic system over a signature $\Sigma=\{[x,y],p_{m,n}\mid m,n\ge1\}$. We point out bases of operations of the set $\Sigma$ in the classes of all algebras, all commutative algebras, right alternative and Jordan algebras.
Keywords: primitive operations, eigenpolynomials, free algebras.
@article{AL_2017_56_3_a2,
     author = {S. V. Pchelintsev and I. P. Shestakov},
     title = {Constants of partial derivations and primitive operations},
     journal = {Algebra i logika},
     pages = {317--347},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_3_a2/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
AU  - I. P. Shestakov
TI  - Constants of partial derivations and primitive operations
JO  - Algebra i logika
PY  - 2017
SP  - 317
EP  - 347
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_3_a2/
LA  - ru
ID  - AL_2017_56_3_a2
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%A I. P. Shestakov
%T Constants of partial derivations and primitive operations
%J Algebra i logika
%D 2017
%P 317-347
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_3_a2/
%G ru
%F AL_2017_56_3_a2
S. V. Pchelintsev; I. P. Shestakov. Constants of partial derivations and primitive operations. Algebra i logika, Tome 56 (2017) no. 3, pp. 317-347. http://geodesic.mathdoc.fr/item/AL_2017_56_3_a2/