Constants of partial derivations and primitive operations
Algebra i logika, Tome 56 (2017) no. 3, pp. 317-347.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe algebras of constants of the set of all partial derivations in free algebras of unitarily closed varieties over a field of characteristic 0. These constants are also called eigenpolynomials. It is proved that a subalgebra of eigenpolynomials coincides with the subalgebra generated by values of commutators and Umirbaev–Shestakov primitive elements $p_{m,n}$ on a set of generators for a free algebra. The space of primitive elements is a linear algebraic system over a signature $\Sigma=\{[x,y],p_{m,n}\mid m,n\ge1\}$. We point out bases of operations of the set $\Sigma$ in the classes of all algebras, all commutative algebras, right alternative and Jordan algebras.
Keywords: primitive operations, eigenpolynomials, free algebras.
@article{AL_2017_56_3_a2,
     author = {S. V. Pchelintsev and I. P. Shestakov},
     title = {Constants of partial derivations and primitive operations},
     journal = {Algebra i logika},
     pages = {317--347},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_3_a2/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
AU  - I. P. Shestakov
TI  - Constants of partial derivations and primitive operations
JO  - Algebra i logika
PY  - 2017
SP  - 317
EP  - 347
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_3_a2/
LA  - ru
ID  - AL_2017_56_3_a2
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%A I. P. Shestakov
%T Constants of partial derivations and primitive operations
%J Algebra i logika
%D 2017
%P 317-347
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_3_a2/
%G ru
%F AL_2017_56_3_a2
S. V. Pchelintsev; I. P. Shestakov. Constants of partial derivations and primitive operations. Algebra i logika, Tome 56 (2017) no. 3, pp. 317-347. http://geodesic.mathdoc.fr/item/AL_2017_56_3_a2/

[1] W. Specht, “Gesetze in Ringen. I”, Math. Z., 52 (1950), 557–589 | DOI | MR | Zbl

[2] L. Gerritzen, R. Holtkamp, “Hopf co-addition for free magma algebras and the non-associative Hausdorff series”, J. Algebra, 265:1 (2003), 264–284 | DOI | MR | Zbl

[3] V. Drensky, R. Holtkamp, “Constants of formal derivatives of non-associative algebras, Taylor expansions and applications”, Rend. Circ. Mat. Palermo (2), 55:3 (2006), 369–384 | DOI | MR | Zbl

[4] C. B. Pchelintsev, “O mnogoobraziyakh, porozhdennykh svobodnymi algebrami tipa $(-1,1)$ konechnogo ranga”, Sib. matem. zh., 28:2 (1987), 149–158 | MR | Zbl

[5] I. P. Shestakov, U. U. Umirbaev, “Free Akivis algebras, primitive elements and hyperalgebras”, J. Algebra, 250:2 (2002), 533–548 | DOI | MR | Zbl

[6] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[7] J. M. Pérez-Izquierdo, “An envelope for Bol algebras”, J. Algebra, 284:2 (2005), 480–493 | DOI | MR | Zbl

[8] J. M. Pérez-Izquierdo, I. P. Shestakov, “An envelope for Malcev algebras”, J. Algebra, 272:1 (2004), 379–393 | DOI | MR | Zbl

[9] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[10] A. I. Shirshov, “O svobodnykh koltsakh Li”, Matem. sb., 45(87):2 (1958), 113–122 | MR | Zbl