The computational power of infinite time Blum--Shub--Smale machines
Algebra i logika, Tome 56 (2017) no. 1, pp. 55-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Functions that are computable on infinite time Blum–Shub–Smale machines (ITBM) are characterized via iterated Turing jumps, and we propose a normal form for these functions. It is also proved that the set of ITBM computable reals coincides with $\mathbb R\cap L_{\omega^\omega}$.
Keywords: infinite time Blum–Shub–Smale machines, infinite computations, iterated jump, ITBM, BSS-machines, computable reals.
@article{AL_2017_56_1_a2,
     author = {P. Koepke and A. S. Morozov},
     title = {The computational power of infinite time {Blum--Shub--Smale} machines},
     journal = {Algebra i logika},
     pages = {55--92},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2017_56_1_a2/}
}
TY  - JOUR
AU  - P. Koepke
AU  - A. S. Morozov
TI  - The computational power of infinite time Blum--Shub--Smale machines
JO  - Algebra i logika
PY  - 2017
SP  - 55
EP  - 92
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2017_56_1_a2/
LA  - ru
ID  - AL_2017_56_1_a2
ER  - 
%0 Journal Article
%A P. Koepke
%A A. S. Morozov
%T The computational power of infinite time Blum--Shub--Smale machines
%J Algebra i logika
%D 2017
%P 55-92
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2017_56_1_a2/
%G ru
%F AL_2017_56_1_a2
P. Koepke; A. S. Morozov. The computational power of infinite time Blum--Shub--Smale machines. Algebra i logika, Tome 56 (2017) no. 1, pp. 55-92. http://geodesic.mathdoc.fr/item/AL_2017_56_1_a2/

[1] J. D. Hamkins, A. Lewis, “Infinite time Turing machines”, J. Symb. Log., 65:2 (2000), 567–604 | DOI | MR | Zbl

[2] P. Koepke, “Turing computations on ordinals”, Bull. Symb. Log., 11:3 (2005), 377–397 | DOI | Zbl

[3] B. Seyfferth, P. Koepke, “Towards a theory of infinite time Blum–Shub–Smale machines”, How the world computes, Turing centenary conf. and 8th conf. on computability in Europe – CiE 2012 (Cambridge, UK, June 18–23, 2012), Proc., Lect. Notes Comput. Sci., 7318, eds. S. B. Cooper et al., Springer-Verlag, Berlin, 2012, 405–415 | DOI | MR | Zbl

[4] R. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl | MR

[5] G. E. Sacks, Higher recursion theory, Perspect. Math. Log., Springer-Verlag, Berlin etc., 1990 | DOI | MR | Zbl