The computational power of infinite time Blum–Shub–Smale machines
Algebra i logika, Tome 56 (2017) no. 1, pp. 55-92
Voir la notice de l'article provenant de la source Math-Net.Ru
Functions that are computable on infinite time Blum–Shub–Smale machines (ITBM) are characterized via iterated Turing jumps, and we propose a normal form for these functions. It is also proved that the set of ITBM computable reals coincides with $\mathbb R\cap L_{\omega^\omega}$.
Keywords:
infinite time Blum–Shub–Smale machines, infinite computations, iterated jump, ITBM, BSS-machines, computable reals.
@article{AL_2017_56_1_a2,
author = {P. Koepke and A. S. Morozov},
title = {The computational power of infinite time {Blum{\textendash}Shub{\textendash}Smale} machines},
journal = {Algebra i logika},
pages = {55--92},
publisher = {mathdoc},
volume = {56},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2017_56_1_a2/}
}
P. Koepke; A. S. Morozov. The computational power of infinite time Blum–Shub–Smale machines. Algebra i logika, Tome 56 (2017) no. 1, pp. 55-92. http://geodesic.mathdoc.fr/item/AL_2017_56_1_a2/