Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2017_56_1_a2, author = {P. Koepke and A. S. Morozov}, title = {The computational power of infinite time {Blum--Shub--Smale} machines}, journal = {Algebra i logika}, pages = {55--92}, publisher = {mathdoc}, volume = {56}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2017_56_1_a2/} }
P. Koepke; A. S. Morozov. The computational power of infinite time Blum--Shub--Smale machines. Algebra i logika, Tome 56 (2017) no. 1, pp. 55-92. http://geodesic.mathdoc.fr/item/AL_2017_56_1_a2/
[1] J. D. Hamkins, A. Lewis, “Infinite time Turing machines”, J. Symb. Log., 65:2 (2000), 567–604 | DOI | MR | Zbl
[2] P. Koepke, “Turing computations on ordinals”, Bull. Symb. Log., 11:3 (2005), 377–397 | DOI | Zbl
[3] B. Seyfferth, P. Koepke, “Towards a theory of infinite time Blum–Shub–Smale machines”, How the world computes, Turing centenary conf. and 8th conf. on computability in Europe – CiE 2012 (Cambridge, UK, June 18–23, 2012), Proc., Lect. Notes Comput. Sci., 7318, eds. S. B. Cooper et al., Springer-Verlag, Berlin, 2012, 405–415 | DOI | MR | Zbl
[4] R. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl | MR
[5] G. E. Sacks, Higher recursion theory, Perspect. Math. Log., Springer-Verlag, Berlin etc., 1990 | DOI | MR | Zbl