Generalized hyperarithmetical computability over structures
Algebra i logika, Tome 55 (2016) no. 6, pp. 769-799

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of approximation spaces generated by admissible sets and, in particular, by hereditarily finite superstructures over structures. Generalized computability on approximation spaces is conceived of as effective definability in dynamic logic. By analogy with the notion of a structure $\Sigma$-definable in an admissible set, we introduce the notion of a structure effectively definable on an approximation space. In much the same way as the $\Sigma$-reducibility relation, we can naturally define a reducibility relation on structures generating appropriate semilattices of degrees of structures (of arbitrary cardinality), as well as a jump operation. It is stated that there is a natural embedding of the semilattice of hyperdegrees of sets of natural numbers in the semilattices mentioned, which preserves the hyperjump operation. A syntactic description of structures having hyperdegree is given.
Keywords: computability theory, admissible sets, approximation spaces, constructive models, computable analysis, hyperarithmetical computability.
@article{AL_2016_55_6_a5,
     author = {A. I. Stukachev},
     title = {Generalized hyperarithmetical computability over structures},
     journal = {Algebra i logika},
     pages = {769--799},
     publisher = {mathdoc},
     volume = {55},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_6_a5/}
}
TY  - JOUR
AU  - A. I. Stukachev
TI  - Generalized hyperarithmetical computability over structures
JO  - Algebra i logika
PY  - 2016
SP  - 769
EP  - 799
VL  - 55
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_6_a5/
LA  - ru
ID  - AL_2016_55_6_a5
ER  - 
%0 Journal Article
%A A. I. Stukachev
%T Generalized hyperarithmetical computability over structures
%J Algebra i logika
%D 2016
%P 769-799
%V 55
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_6_a5/
%G ru
%F AL_2016_55_6_a5
A. I. Stukachev. Generalized hyperarithmetical computability over structures. Algebra i logika, Tome 55 (2016) no. 6, pp. 769-799. http://geodesic.mathdoc.fr/item/AL_2016_55_6_a5/