Freely generated projective planes with finite computable dimension
Algebra i logika, Tome 55 (2016) no. 6, pp. 704-737.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for every natural $n\ge1$, there exists a computable freely generated projective plane with computable dimension $n$. It is stated that the class of freely generated projective planes is complete with respect to degree spectra of automorphically nontrivial structures, effective dimensions, expansions by constants, and degree spectra of relations.
Keywords: degree spectra of automorphically nontrivial structures, expansions by constants, and degree spectra of relations.
Mots-clés : effective dimensions
@article{AL_2016_55_6_a2,
     author = {N. T. Kogabaev},
     title = {Freely generated projective planes with finite computable dimension},
     journal = {Algebra i logika},
     pages = {704--737},
     publisher = {mathdoc},
     volume = {55},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_6_a2/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - Freely generated projective planes with finite computable dimension
JO  - Algebra i logika
PY  - 2016
SP  - 704
EP  - 737
VL  - 55
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_6_a2/
LA  - ru
ID  - AL_2016_55_6_a2
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T Freely generated projective planes with finite computable dimension
%J Algebra i logika
%D 2016
%P 704-737
%V 55
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_6_a2/
%G ru
%F AL_2016_55_6_a2
N. T. Kogabaev. Freely generated projective planes with finite computable dimension. Algebra i logika, Tome 55 (2016) no. 6, pp. 704-737. http://geodesic.mathdoc.fr/item/AL_2016_55_6_a2/

[1] N. T. Kogabaev, “Klass proektivnykh ploskostei nevychislim”, Algebra i logika, 47:4 (2008), 428–455 | MR | Zbl

[2] S. S. Goncharov, “Problema chisla neavtoekvivalentnykh konstruktivizatsii”, Algebra i logika, 19:6 (1980), 621–639 | MR

[3] S. S. Goncharov, A. V. Molokov, N. S. Romanovskii, “Nilpotentnye gruppy konechnoi algoritmicheskoi razmernosti”, Sib. matem. zh., 30:1 (1989), 82–88 | MR | Zbl

[4] B. Khoussainov, R. A. Shore, “Computable isomorphisms, degree spectra of relations, and Scott families”, Ann. Pure Appl. Logic, 93:1–3 (1998), 153–193 | DOI | MR | Zbl

[5] P. Cholak, S. Goncharov, B. Khoussainov, R. A. Shore, “Computably categorical structures and expansions by constants”, J. Symb. Log., 64:1 (1999), 13–37 | DOI | MR | Zbl

[6] B. M. Khusainov, R. A. Shor, “O reshenii problemy Goncharova–Esha i problemy spektra v teorii vychislimykh modelei”, Dokl. RAN, 371:1 (2000), 30–31 | MR | Zbl

[7] R. Miller, B. Poonen, H. Schoutens, A. Shlapentokh, A computable functor from graphs to fields, submitted, arXiv: 1510.07322

[8] L. Richter, “Degrees of structures”, J. Symb. Log., 46:4 (1981), 723–731 | DOI | MR | Zbl

[9] J. F. Knight, “Degrees coded in jumps of orderings”, J. Symb. Log., 51:4 (1986), 1034–1042 | DOI | MR | Zbl

[10] T. A. Slaman, “Relative to any nonrecursive set”, Proc. Am. Math. Soc., 126:7 (1998), 2117–2122 | DOI | MR | Zbl

[11] S. Wehner, “Enumeration, countable structure and Turing degrees”, Proc. Am. Math. Soc., 126:7 (1998), 2131–2139 | DOI | MR | Zbl

[12] I. Sh. Kalimullin, “Spektry stepenei nekotorykh algebraicheskikh struktur”, Algebra i logika, 46:6 (2007), 729–744 | MR | Zbl

[13] A. Frolov, I. Kalimullin, V. Harizanov, O. Kudinov, R. Miller, “Spectra of highn and non-lown degrees”, J. Log. Comput., 22:4 (2012), 755–777 | DOI | MR | Zbl

[14] V. S. Harizanov, “Uncountable degree spectra”, Ann. Pure Appl. Logic, 54:3 (1991), 255–263 | DOI | MR | Zbl

[15] V. S. Harizanov, “Some effects of Ash-Nerode and other decidability conditions on degree spectra”, Ann. Pure Appl. Logic, 55:1 (1991), 51–65 | DOI | MR | Zbl

[16] V. S. Harizanov, “The possible Turing degree of the nonzero member in a two element degree spectrum”, Ann. Pure Appl. Logic, 60:1 (1993), 1–30 | DOI | MR | Zbl

[17] D. R. Hirschfeldt, “Degree spectra of relations on structures of finite computable dimension”, Ann. Pure Appl. Logic, 115:1–3 (2002), 233–277 | DOI | MR | Zbl

[18] D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, A. M. Slinko, “Degree spectra and computable dimensions in algebraic structures”, Ann. Pure Appl. Logic, 115:1–3 (2002), 71–113 | DOI | MR | Zbl

[19] N. T. Kogabaev, “Teoriya proektivnykh ploskostei polna otnositelno spektrov stepenei i effektivnykh razmernostei”, Algebra i logika, 54:5 (2015), 599–627 | MR | Zbl

[20] A. I. Shirshov, A. A. Nikitin, “K teorii proektivnykh ploskostei”, Algebra i logika, 20:3 (1981), 330–356 | MR | Zbl

[21] D. R. Hughes, F. C. Piper, Projective planes, Grad. Texts Math., 6, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl

[22] N. T. Kogabaev, “Nerazreshimost teorii proektivnykh ploskostei”, Algebra i logika, 49:1 (2010), 3–17 | MR | Zbl

[23] A. A. Nikitin, “O svobodno porozhdënnykh proektivnykh ploskostyakh”, Algebra i logika, 22:1 (1983), 61–77 | MR