Structures computable in polynomial time. I
Algebra i logika, Tome 55 (2016) no. 6, pp. 647-669

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every computable locally finite structure with finitely many functions has a presentation computable in polynomial time. Furthermore, a structure computable in polynomial time is polynomially categorical iff it is finite. If a structure is computable in polynomial time and locally finite then it is weakly polynomially categorical (i.e., categorical with respect to primitive recursive isomorphisms) iff it is finite.
Keywords: locally finite structure, computable structure, structure computable in polynomial time, polynomially categorical structure, weakly polynomially categorical structure.
@article{AL_2016_55_6_a0,
     author = {P. E. Alaev},
     title = {Structures computable in polynomial {time.~I}},
     journal = {Algebra i logika},
     pages = {647--669},
     publisher = {mathdoc},
     volume = {55},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_6_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Structures computable in polynomial time. I
JO  - Algebra i logika
PY  - 2016
SP  - 647
EP  - 669
VL  - 55
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_6_a0/
LA  - ru
ID  - AL_2016_55_6_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Structures computable in polynomial time. I
%J Algebra i logika
%D 2016
%P 647-669
%V 55
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_6_a0/
%G ru
%F AL_2016_55_6_a0
P. E. Alaev. Structures computable in polynomial time. I. Algebra i logika, Tome 55 (2016) no. 6, pp. 647-669. http://geodesic.mathdoc.fr/item/AL_2016_55_6_a0/