@article{AL_2016_55_5_a4,
author = {A. N. Rybalov},
title = {A~generic relation on recursively enumerable sets},
journal = {Algebra i logika},
pages = {587--596},
year = {2016},
volume = {55},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2016_55_5_a4/}
}
A. N. Rybalov. A generic relation on recursively enumerable sets. Algebra i logika, Tome 55 (2016) no. 5, pp. 587-596. http://geodesic.mathdoc.fr/item/AL_2016_55_5_a4/
[1] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, “Generic-case complexity, decision problems in group theory, and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[2] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, “Average-case complexity and decision problems in group theory”, Adv. Math., 190:2 (2005), 343–359 | DOI | MR | Zbl
[3] J. D. Hamkins, A. Miasnikov, “The halting problem is decidable on a set of asymptotic probability one”, Notre Dame J. Formal Logic, 47:4 (2006), 515–524 | DOI | MR | Zbl
[4] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR
[5] S. A. Cook, “The complexity of theorem-proving procedures”, Proc. 3rd ann. ACM Sympos. Theory Computing (Shaker Heights, Ohio, 1971), ACM, 1971, 151–158 | DOI | Zbl
[6] C. G. Jockusch (jun.), P. E. Schupp, “Generic computability, Turing degrees, and asymptotic density”, J. London Math. Soc. II Ser., 85:2 (2012), 472–490 | DOI | MR | Zbl
[7] G. Igusa, “The generic degrees of density-1 sets, and a characterization of the hyperarithmetic reals”, J. Symb. Log., 80:4 (2015), 1290–1314 | DOI | MR | Zbl