Partially divisible completions of rigid metabelian pro-$p$-groups
Algebra i logika, Tome 55 (2016) no. 5, pp. 571-586.

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously, the author defined the concept of a rigid (abstract) group. By analogy, a metabelian pro-$p$-group $G$ is said to be rigid if it contains a normal series of the form $G=G_1\ge G_2\ge G_3=1$ such that the factor group $A=G/G_2$ is torsion-free Abelian, and $G_2$ being a $\mathbb Z_pA$-module is torsion-free. An abstract rigid group can be completed and made divisible. Here we do something similar for finitely generated rigid metabelian pro-$p$-groups. In so doing, we need to exit the class of pro-$p$-groups, since even the completion of a torsion-free nontrivial Abelian pro-$p$-group is not a pro-$p$-group. In order to not complicate the situation, we do not complete a first factor, i.e., the group $A$. Indeed, $A$ is simply structured: it is isomorphic to a direct sum of copies of $\mathbb Z_p$. A second factor, i.e., the group $G_2$, is completed to a vector space over a field of fractions of a ring $\mathbb Z_pA$, in which case the field and the space are endowed with suitable topologies. The main result is giving a description of coordinate groups of irreducible algebraic sets over such a partially divisible topological group.
Keywords: abstract rigid group, coordinate group, irreducible algebraic set.
Mots-clés : divisible group
@article{AL_2016_55_5_a3,
     author = {N. S. Romanovskii},
     title = {Partially divisible completions of rigid metabelian pro-$p$-groups},
     journal = {Algebra i logika},
     pages = {571--586},
     publisher = {mathdoc},
     volume = {55},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_5_a3/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Partially divisible completions of rigid metabelian pro-$p$-groups
JO  - Algebra i logika
PY  - 2016
SP  - 571
EP  - 586
VL  - 55
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_5_a3/
LA  - ru
ID  - AL_2016_55_5_a3
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Partially divisible completions of rigid metabelian pro-$p$-groups
%J Algebra i logika
%D 2016
%P 571-586
%V 55
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_5_a3/
%G ru
%F AL_2016_55_5_a3
N. S. Romanovskii. Partially divisible completions of rigid metabelian pro-$p$-groups. Algebra i logika, Tome 55 (2016) no. 5, pp. 571-586. http://geodesic.mathdoc.fr/item/AL_2016_55_5_a3/

[1] N. S. Romanovskii, “Delimye zhëstkie gruppy”, Algebra i logika, 47:6 (2008), 762–776 | MR | Zbl

[2] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279 | MR | Zbl

[3] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhëstkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR | Zbl

[4] N. S. Romanovskii, “Koproizvedeniya zhëstkikh grupp”, Algebra i logika, 49:6 (2010), 803–818 | MR

[5] N. S. Romanovskiy, “Presentations for rigid solvable groups”, J. Group Theory, 15:6 (2012), 793–810 | DOI | MR | Zbl

[6] N. S. Romanovskii, “Teorema Gilberta o nulyakh (Nullstellensatz) v algebraicheskoi geometrii nad zhëstkimi razreshimymi gruppami”, Izv. RAN. Ser. matem., 79:5 (2015), 201–214 | DOI | MR

[7] A. Myasnikov, N. Romanovskiy, “Krull dimension of solvable groups”, J. Algebra, 324:10 (2010), 2814–2831 | DOI | MR | Zbl

[8] A. G. Myasnikov, N. S. Romanovskii, “Ob universalnykh teoriyakh zhëstkikh razreshimykh grupp”, Algebra i logika, 50:6 (2011), 802–821 | MR | Zbl

[9] A. G. Myasnikov, N. S. Romanovskii, “Logicheskie aspekty teorii delimykh zhestkikh grupp”, DAN, 459:2 (2014), 154–155 | Zbl

[10] S. G. Melesheva, “Ob uravneniyakh i algebraicheskoi geometrii nad prokonechnymi gruppami”, Algebra i logika, 49:5 (2010), 654–669 | MR | Zbl

[11] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[12] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[13] J. S. Wilson, Profinite groups, Lond. Math. Soc. Monogr. New Ser., 19, Clarendon Press, Oxford, 1998 | MR | Zbl

[14] S. G. Afanaseva, N. S. Romanovskii, “Zhëstkie metabelevy pro-$p$-gruppy”, Algebra i logika, 53:2 (2014), 162–177 | MR | Zbl