Decomposition of a group over an Abelian normal subgroup
Algebra i logika, Tome 55 (2016) no. 4, pp. 478-492

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a group $G$ have an Abelian normal subgroup $A$; put $\overline G=G/A$ and $\overline g=gA$ for $g\in G$. We can think of $A$ as a right $\mathbb Z\overline G$-module and define the action of an element $u=\alpha_1\overline g_1+\dots+\alpha_n\overline g_n\in\mathbb Z\overline G$ on $a\in A$ by a formula $a^u=(a^{g_1})^{\alpha_1}\cdot\ldots\cdot(a^{g_n})^{\alpha_n}$; here $a^{g_i}=g^{-1}_iag_i$. Denote by $\Theta_{\mathbb Z\overline G}(A)$ the annihilator of $A$ in the ring $\mathbb Z\overline G$, which is a two-sided ideal. Let $R=\mathbb Z\overline G/\Theta_{\mathbb Z\overline G}(A)$. A subgroup $A$ can also be treated as an $R$-module. We give a criterion for the existence of an $R$-decomposition of $G$ over $A$, i.e., the possibility of embedding $G$ in a semidirect product $\overline G\cdot D$, where $D$ is an $R$-module. It is also proved that an $R$-decomposition always exists in one important case.
Keywords: Abelian normal subgroup
Mots-clés : $R$-decomposition.
@article{AL_2016_55_4_a6,
     author = {N. S. Romanovskii},
     title = {Decomposition of a~group over an {Abelian} normal subgroup},
     journal = {Algebra i logika},
     pages = {478--492},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_4_a6/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Decomposition of a group over an Abelian normal subgroup
JO  - Algebra i logika
PY  - 2016
SP  - 478
EP  - 492
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_4_a6/
LA  - ru
ID  - AL_2016_55_4_a6
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Decomposition of a group over an Abelian normal subgroup
%J Algebra i logika
%D 2016
%P 478-492
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_4_a6/
%G ru
%F AL_2016_55_4_a6
N. S. Romanovskii. Decomposition of a group over an Abelian normal subgroup. Algebra i logika, Tome 55 (2016) no. 4, pp. 478-492. http://geodesic.mathdoc.fr/item/AL_2016_55_4_a6/