Decomposition of a~group over an Abelian normal subgroup
Algebra i logika, Tome 55 (2016) no. 4, pp. 478-492.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a group $G$ have an Abelian normal subgroup $A$; put $\overline G=G/A$ and $\overline g=gA$ for $g\in G$. We can think of $A$ as a right $\mathbb Z\overline G$-module and define the action of an element $u=\alpha_1\overline g_1+\dots+\alpha_n\overline g_n\in\mathbb Z\overline G$ on $a\in A$ by a formula $a^u=(a^{g_1})^{\alpha_1}\cdot\ldots\cdot(a^{g_n})^{\alpha_n}$; here $a^{g_i}=g^{-1}_iag_i$. Denote by $\Theta_{\mathbb Z\overline G}(A)$ the annihilator of $A$ in the ring $\mathbb Z\overline G$, which is a two-sided ideal. Let $R=\mathbb Z\overline G/\Theta_{\mathbb Z\overline G}(A)$. A subgroup $A$ can also be treated as an $R$-module. We give a criterion for the existence of an $R$-decomposition of $G$ over $A$, i.e., the possibility of embedding $G$ in a semidirect product $\overline G\cdot D$, where $D$ is an $R$-module. It is also proved that an $R$-decomposition always exists in one important case.
Keywords: Abelian normal subgroup
Mots-clés : $R$-decomposition.
@article{AL_2016_55_4_a6,
     author = {N. S. Romanovskii},
     title = {Decomposition of a~group over an {Abelian} normal subgroup},
     journal = {Algebra i logika},
     pages = {478--492},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_4_a6/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Decomposition of a~group over an Abelian normal subgroup
JO  - Algebra i logika
PY  - 2016
SP  - 478
EP  - 492
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_4_a6/
LA  - ru
ID  - AL_2016_55_4_a6
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Decomposition of a~group over an Abelian normal subgroup
%J Algebra i logika
%D 2016
%P 478-492
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_4_a6/
%G ru
%F AL_2016_55_4_a6
N. S. Romanovskii. Decomposition of a~group over an Abelian normal subgroup. Algebra i logika, Tome 55 (2016) no. 4, pp. 478-492. http://geodesic.mathdoc.fr/item/AL_2016_55_4_a6/

[1] M. Krasner, L. Kaloujnine, “Produit complet des groupes de permutations et le probléme d'extension de groupes. III”, Acta Sci. Math., 14 (1951), 69–82 | MR | Zbl

[2] H. J. Zassenhaus, The theory of groups, 2nd ed., Chelsea Publ. Co., New York; Vandenhoeck Ruprecht, Göttingen, 1958 | MR | Zbl

[3] Yu. V. Kuzmin, “O nekotorykh svoistvakh svobodnykh abelevykh rasshirenii”, Matem. sb., 180:6 (1989), 850–862 | MR | Zbl

[4] Yu. V. Kuzmin, “Vlozhenie Magnusa kak chastnyi sluchai odnoi gomologicheskoi konstruktsii”, Matem. zametki, 79:4 (2006), 571–576 | DOI | MR | Zbl

[5] A. Myasnikov, N. Romanovskiy, “Krull dimension of solvable groups”, J. Algebra, 324:10 (2010), 2814–2831 | DOI | MR | Zbl

[6] N. S. Romanovskii, “Delimye zhëstkie gruppy”, Algebra i logika, 47:6 (2008), 762–776 | MR | Zbl

[7] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279 | MR | Zbl

[8] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhëstkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR | Zbl

[9] N. S. Romanovskii, “Koproizvedeniya zhëstkikh grupp”, Algebra i logika, 49:6 (2010), 803–818 | MR

[10] N. S. Romanovskiy, “Presentations for rigid solvable groups”, J. Group Theory, 15:6 (2012), 793–810 | DOI | MR | Zbl

[11] W. Magnus, “On a theorem of Marshall Hall”, Ann. Math. (2), 40:4 (1939), 764–768 | DOI | MR

[12] N. Blackburn, “Note on a theorem of Magnus”, J. Aust. Math. Soc., 10:3/4 (1969), 469–474 | DOI | MR | Zbl

[13] V. N. Remeslennikov, V. G. Sokolov, “Nekotorye svoistva vlozheniya Magnusa”, Algebra i logika, 9:5 (1970), 566–578 | MR

[14] N. Gupta, Free group rings, Contemp. Math., 66, Am. Math. Soc., Providence, RI, 1987 | DOI | MR | Zbl