$\Pi^1_1$-completeness of the computable categoricity problem
Algebra i logika, Tome 55 (2016) no. 4, pp. 432-440

Voir la notice de l'article provenant de la source Math-Net.Ru

Computable presentations for projective planes are studied. We prove that the problem of computable categoricity is $\Pi^1_1$-complete for the following classes of projective planes: Pappian projective planes, Desarguesian projective planes, arbitrary projective planes.
Keywords: computable categoricity, computable structure, Desarguesian projective plane, Pappian projective plane, projective plane.
Mots-clés : computable dimension
@article{AL_2016_55_4_a2,
     author = {N. T. Kogabaev},
     title = {$\Pi^1_1$-completeness of the computable categoricity problem},
     journal = {Algebra i logika},
     pages = {432--440},
     publisher = {mathdoc},
     volume = {55},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_4_a2/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - $\Pi^1_1$-completeness of the computable categoricity problem
JO  - Algebra i logika
PY  - 2016
SP  - 432
EP  - 440
VL  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_4_a2/
LA  - ru
ID  - AL_2016_55_4_a2
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T $\Pi^1_1$-completeness of the computable categoricity problem
%J Algebra i logika
%D 2016
%P 432-440
%V 55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_4_a2/
%G ru
%F AL_2016_55_4_a2
N. T. Kogabaev. $\Pi^1_1$-completeness of the computable categoricity problem. Algebra i logika, Tome 55 (2016) no. 4, pp. 432-440. http://geodesic.mathdoc.fr/item/AL_2016_55_4_a2/