Mots-clés : computable dimension
@article{AL_2016_55_4_a2,
author = {N. T. Kogabaev},
title = {$\Pi^1_1$-completeness of the computable categoricity problem},
journal = {Algebra i logika},
pages = {432--440},
year = {2016},
volume = {55},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2016_55_4_a2/}
}
N. T. Kogabaev. $\Pi^1_1$-completeness of the computable categoricity problem. Algebra i logika, Tome 55 (2016) no. 4, pp. 432-440. http://geodesic.mathdoc.fr/item/AL_2016_55_4_a2/
[1] R. G. Downey, A. M. Kach, S. Lempp, A. E. M. Lewis-Pye, A. Montalbán, D. D. Turetsky, “The complexity of computable categoricity”, Adv. Math., 268 (2015), 423–466 | DOI | MR | Zbl
[2] D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, A. M. Slinko, “Degree spectra and computable dimensions in algebraic structures”, Ann. Pure Appl. Logic, 115:1–3 (2002), 71–113 | DOI | MR | Zbl
[3] R. Miller, B. Poonen, H. Schoutens, A. Shlapentokh, A computable functor from graphs to fields, arXiv: 1510.07322
[4] N. T. Kogabaev, “Teoriya proektivnykh ploskostei polna otnositelno spektrov stepenei i effektivnykh razmernostei”, Algebra i logika, 54:5 (2015), 599–627 | MR | Zbl
[5] A. I. Shirshov, A. A. Nikitin, “K teorii proektivnykh ploskostei”, Algebra i logika, 20:3 (1981), 330–356 | MR | Zbl
[6] A. I. Shirshov, A. A. Nikitin, Algebraicheskaya teoriya proektivnykh ploskostei, Novosibirskii gos. un-t, Novosibirsk, 1987
[7] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999
[8] D. R. Hughes, F. C. Piper, Projective planes, Grad. Texts Math., 6, Springer-Verlag, New York–Heidelberg–Berlin, 1973 | MR | Zbl
[9] S. S. Goncharov, N. A. Bazhenov, M. I. Marchuk, “Indeksnye mnozhestva avtoustoichivykh otnositelno silnykh konstruktivizatsii konstruktivnykh modelei estestvennykh klassov”, Doklady AN, 464:1 (2015), 12–14 | DOI | MR | Zbl