A sufficient condition for nonpresentability of structures in hereditarily finite superstructures
Algebra i logika, Tome 55 (2016) no. 3, pp. 366-379

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class of existentially Steinitz structures containing, in particular, the fields of real and complex numbers. A general result is proved which implies that if $\mathfrak M$ is an existentially Steinitz structure then the following structures cannot be embedded in any structure $\Sigma$-presentable with trivial equivalence over $\mathbb{HF}(\mathfrak M)$: the Boolean algebra of all subsets of $\omega$, its factor modulo the ideal consisting of finite sets, the group of all permutations on $\omega$, its factor modulo the subgroup of all finitary permutations, the semigroup of all mappings from $\omega$ to $\omega$, the lattice of all open sets of real numbers, the lattice of all closed sets of real numbers, the group of all permutations of $\mathbb R$ $\Sigma$-definable with parameters over $\mathbb{HF(R)}$, and the semigroup of such mappings from $\mathbb R$ to $\mathbb R$.
Keywords: existentially Steinitz structure, hereditarily finite superstructure, $\Sigma$-presentability.
@article{AL_2016_55_3_a4,
     author = {A. S. Morozov},
     title = {A sufficient condition for nonpresentability of structures in hereditarily finite superstructures},
     journal = {Algebra i logika},
     pages = {366--379},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_3_a4/}
}
TY  - JOUR
AU  - A. S. Morozov
TI  - A sufficient condition for nonpresentability of structures in hereditarily finite superstructures
JO  - Algebra i logika
PY  - 2016
SP  - 366
EP  - 379
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_3_a4/
LA  - ru
ID  - AL_2016_55_3_a4
ER  - 
%0 Journal Article
%A A. S. Morozov
%T A sufficient condition for nonpresentability of structures in hereditarily finite superstructures
%J Algebra i logika
%D 2016
%P 366-379
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_3_a4/
%G ru
%F AL_2016_55_3_a4
A. S. Morozov. A sufficient condition for nonpresentability of structures in hereditarily finite superstructures. Algebra i logika, Tome 55 (2016) no. 3, pp. 366-379. http://geodesic.mathdoc.fr/item/AL_2016_55_3_a4/