A sufficient condition for nonpresentability of structures in hereditarily finite superstructures
Algebra i logika, Tome 55 (2016) no. 3, pp. 366-379.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class of existentially Steinitz structures containing, in particular, the fields of real and complex numbers. A general result is proved which implies that if $\mathfrak M$ is an existentially Steinitz structure then the following structures cannot be embedded in any structure $\Sigma$-presentable with trivial equivalence over $\mathbb{HF}(\mathfrak M)$: the Boolean algebra of all subsets of $\omega$, its factor modulo the ideal consisting of finite sets, the group of all permutations on $\omega$, its factor modulo the subgroup of all finitary permutations, the semigroup of all mappings from $\omega$ to $\omega$, the lattice of all open sets of real numbers, the lattice of all closed sets of real numbers, the group of all permutations of $\mathbb R$ $\Sigma$-definable with parameters over $\mathbb{HF(R)}$, and the semigroup of such mappings from $\mathbb R$ to $\mathbb R$.
Keywords: existentially Steinitz structure, hereditarily finite superstructure, $\Sigma$-presentability.
@article{AL_2016_55_3_a4,
     author = {A. S. Morozov},
     title = {A sufficient condition for nonpresentability of structures in hereditarily finite superstructures},
     journal = {Algebra i logika},
     pages = {366--379},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_3_a4/}
}
TY  - JOUR
AU  - A. S. Morozov
TI  - A sufficient condition for nonpresentability of structures in hereditarily finite superstructures
JO  - Algebra i logika
PY  - 2016
SP  - 366
EP  - 379
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_3_a4/
LA  - ru
ID  - AL_2016_55_3_a4
ER  - 
%0 Journal Article
%A A. S. Morozov
%T A sufficient condition for nonpresentability of structures in hereditarily finite superstructures
%J Algebra i logika
%D 2016
%P 366-379
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_3_a4/
%G ru
%F AL_2016_55_3_a4
A. S. Morozov. A sufficient condition for nonpresentability of structures in hereditarily finite superstructures. Algebra i logika, Tome 55 (2016) no. 3, pp. 366-379. http://geodesic.mathdoc.fr/item/AL_2016_55_3_a4/

[1] Yu. L. Ershov, “$\Sigma$-definability of algebraic structures”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, Recursive model theory, eds. Y. L. Ershov et al., Elsevier Science B.V., Amsterdam, 1998, 235–260 | DOI | MR | Zbl

[2] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR

[3] J. Barwise, Admissible sets and structures. An approach to definability theory, Perspec. Math. Logic, Springer-Velag, Berlin, 1975 | DOI | MR | Zbl

[4] A. S. Morozov, “O nekotorykh predstavleniyakh polya veschestvennykh chisel”, Algebra i logika, 51:1 (2012), 96–128 | MR | Zbl

[5] A. S. Morozov, “One-dimensional $\Sigma$-presentations of structures over $\mathbb{HF(R)}$”, Infinity, computability, and metamathematics, Festschrift celebrating the 60th birthdays of Peter Koepke and Philip Welch, Tributes, 23, eds. S. Geschke et al., College Publ., 2014 | MR

[6] A. S. Morozov, M. V. Korovina, “O $\Sigma$-opredelimosti schëtnykh struktur nad veschestvennymi, kompleksnymi chislami i kvaternionami”, Algebra i logika, 47:3 (2008), 335–363 | MR | Zbl

[7] A. S. Morozov, “O $\Sigma$-predstavleniyakh veschestvennogo poryadka”, Algebra i logika, 53:3 (2014), 340–371 | MR | Zbl

[8] A. S. Morozov, “$\Sigma$-zhëstkie predstavleniya veschestvennogo poryadka”, Sib. matem. zh., 55:3 (2014), 562–572 | MR | Zbl

[9] A. S. Morozov, “Nepredstavimost polugruppy $\omega^\omega$ nad $\mathbb{HF(R)}$”, Sib. matem. zh., 55:1 (2014), 156–164 | MR | Zbl

[10] G. Metakides, A. Nerode, “Recursion theory on fields and abstract dependence”, J. Algebra, 65 (1980), 36–59 | DOI | MR | Zbl

[11] D. Marker, Model theory: an introduction, Grad. Texts Math., 217, Springer-Verlag, New York etc., 2002 | MR | Zbl

[12] Yu. L. Ershov, V. G. Puzarenko, A. I. Stukachev, “$\mathbb{HF}$-Computability”, Computability in context, Computation and logic in the real world, eds. S. B. Cooper et al., Imperial College Press, London, 2011, 169–242 | DOI | MR | Zbl