Embeddability of the semilattice $\mathbf{L^0_m}$ in Rogers semilattices
Algebra i logika, Tome 55 (2016) no. 3, pp. 328-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give sufficient conditions under which an upper semilattice of computably enumerable $\mathbf m$-degrees is isomorphic to an ideal of a Rogers semilattice of a two-element family of sets in the Ershov hierarchy. It is shown that the given conditions are not necessary.
Keywords: computably enumerable $\mathbf m$-degrees, Rogers semilattice, Ershov hierarchy.
@article{AL_2016_55_3_a2,
     author = {B. S. Kalmurzaev},
     title = {Embeddability of the semilattice $\mathbf{L^0_m}$ in {Rogers} semilattices},
     journal = {Algebra i logika},
     pages = {328--340},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_3_a2/}
}
TY  - JOUR
AU  - B. S. Kalmurzaev
TI  - Embeddability of the semilattice $\mathbf{L^0_m}$ in Rogers semilattices
JO  - Algebra i logika
PY  - 2016
SP  - 328
EP  - 340
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_3_a2/
LA  - ru
ID  - AL_2016_55_3_a2
ER  - 
%0 Journal Article
%A B. S. Kalmurzaev
%T Embeddability of the semilattice $\mathbf{L^0_m}$ in Rogers semilattices
%J Algebra i logika
%D 2016
%P 328-340
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_3_a2/
%G ru
%F AL_2016_55_3_a2
B. S. Kalmurzaev. Embeddability of the semilattice $\mathbf{L^0_m}$ in Rogers semilattices. Algebra i logika, Tome 55 (2016) no. 3, pp. 328-340. http://geodesic.mathdoc.fr/item/AL_2016_55_3_a2/

[1] S. S. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[2] S. A. Badaev, S. S. Goncharov, “Theory of numberings: open problems”, Computability theory and its applications, Contemp. Math., 257, eds. P. Cholak et al., Am. Math. Soc., Providence, RI, 2000, 23–38 | DOI | MR | Zbl

[3] S. A. Badaev, Zh. T. Talasbaeva, “Computable numberings in the hierarchy of Ershov”, Mathematical logic in Asia, Proc. 9th Asian logic conf. (Novosibirsk, Russia, August 16–19, 2005), eds. S. S. Goncharov et al., World Scientific, Hackensack, NJ, 2006, 17–30 | DOI | MR | Zbl

[4] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[5] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B.V., Amsterdam etc., 2000 | MR | Zbl

[6] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv. I”, Algebra i logika, 7:1 (1968), 47–74 | MR | Zbl

[7] R. I. Soare, Recursively enumerable sets and degrees, Perspect. Math. Log., Springer-Verlag, Heidelberg a.o., 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | Zbl | MR

[8] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv. II”, Algebra i logika, 7:4 (1968), 15–47 | MR | Zbl

[9] R. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl | MR