Embeddability of the semilattice $\mathbf{L^0_m}$ in Rogers semilattices
Algebra i logika, Tome 55 (2016) no. 3, pp. 328-340
Voir la notice de l'article provenant de la source Math-Net.Ru
We give sufficient conditions under which an upper semilattice of computably enumerable $\mathbf m$-degrees is isomorphic to an ideal of a Rogers semilattice of a two-element family of sets in the Ershov hierarchy. It is shown that the given conditions are not necessary.
Keywords:
computably enumerable $\mathbf m$-degrees, Rogers semilattice, Ershov hierarchy.
@article{AL_2016_55_3_a2,
author = {B. S. Kalmurzaev},
title = {Embeddability of the semilattice $\mathbf{L^0_m}$ in {Rogers} semilattices},
journal = {Algebra i logika},
pages = {328--340},
publisher = {mathdoc},
volume = {55},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2016_55_3_a2/}
}
B. S. Kalmurzaev. Embeddability of the semilattice $\mathbf{L^0_m}$ in Rogers semilattices. Algebra i logika, Tome 55 (2016) no. 3, pp. 328-340. http://geodesic.mathdoc.fr/item/AL_2016_55_3_a2/