Embeddability of the semilattice $\mathbf{L^0_m}$ in Rogers semilattices
Algebra i logika, Tome 55 (2016) no. 3, pp. 328-340

Voir la notice de l'article provenant de la source Math-Net.Ru

We give sufficient conditions under which an upper semilattice of computably enumerable $\mathbf m$-degrees is isomorphic to an ideal of a Rogers semilattice of a two-element family of sets in the Ershov hierarchy. It is shown that the given conditions are not necessary.
Keywords: computably enumerable $\mathbf m$-degrees, Rogers semilattice, Ershov hierarchy.
@article{AL_2016_55_3_a2,
     author = {B. S. Kalmurzaev},
     title = {Embeddability of the semilattice $\mathbf{L^0_m}$ in {Rogers} semilattices},
     journal = {Algebra i logika},
     pages = {328--340},
     publisher = {mathdoc},
     volume = {55},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_3_a2/}
}
TY  - JOUR
AU  - B. S. Kalmurzaev
TI  - Embeddability of the semilattice $\mathbf{L^0_m}$ in Rogers semilattices
JO  - Algebra i logika
PY  - 2016
SP  - 328
EP  - 340
VL  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_3_a2/
LA  - ru
ID  - AL_2016_55_3_a2
ER  - 
%0 Journal Article
%A B. S. Kalmurzaev
%T Embeddability of the semilattice $\mathbf{L^0_m}$ in Rogers semilattices
%J Algebra i logika
%D 2016
%P 328-340
%V 55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_3_a2/
%G ru
%F AL_2016_55_3_a2
B. S. Kalmurzaev. Embeddability of the semilattice $\mathbf{L^0_m}$ in Rogers semilattices. Algebra i logika, Tome 55 (2016) no. 3, pp. 328-340. http://geodesic.mathdoc.fr/item/AL_2016_55_3_a2/