Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2016_55_3_a0, author = {D. Vakarelov}, title = {Dynamic {mereotopology.~III.} {Whiteheadian} type of integrated point-free theories of space and {time.~III}}, journal = {Algebra i logika}, pages = {273--299}, publisher = {mathdoc}, volume = {55}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2016_55_3_a0/} }
TY - JOUR AU - D. Vakarelov TI - Dynamic mereotopology.~III. Whiteheadian type of integrated point-free theories of space and time.~III JO - Algebra i logika PY - 2016 SP - 273 EP - 299 VL - 55 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2016_55_3_a0/ LA - ru ID - AL_2016_55_3_a0 ER -
D. Vakarelov. Dynamic mereotopology.~III. Whiteheadian type of integrated point-free theories of space and time.~III. Algebra i logika, Tome 55 (2016) no. 3, pp. 273-299. http://geodesic.mathdoc.fr/item/AL_2016_55_3_a0/
[1] D. Vakarelov, “Dinamicheskaya mereotopologiya. III. Edinye tochechno-svobodnye teorii prostranstva i vremeni tipa Uaitkheda. I”, Algebra i logika, 53:3 (2014), 300–322 | MR | Zbl
[2] D. Vakarelov, “Dinamicheskaya mereotopologiya. III. Edinye bestochechnye teorii prostranstva i vremeni tipa Uaitkheda. II”, Algebra i logika, 55:1 (2016), 14–36 | DOI | Zbl
[3] D. Vakarelov, “Dynamic mereotopology: A point-free theory of changing regions. I. Stable and unstable mereotopological relations”, Fundam. Inform., 100:1–4 (2010), 159–180 | MR | Zbl
[4] D. Vakarelov, “Dynamic mereotopology. II: Axiomatizing some Whiteheadian type space-time logics”, Proc. 9th conf. AiML 2012 (Copenhagen, Denmark, August 22–25, 2012), Advances in modal logic, 9, eds. Th. Bolander et al., College Publ., London, 2012, 538–558 | MR | Zbl
[5] D. Vakarelov, “A modal approach to dynamic ontology: modal mereotopology”, Log. Log. Philos., 17:1/2 (2008), 163–183 | MR | Zbl
[6] I. Düntsch, M. Winter, “Moving spaces”, Proc. 15th Int. Symp. on temporal representation and reasoning, TIME2008 (Montréal, Canada, June 16–18, 2008), eds. St. Demri, Ch. S. Jensen, IEEE Computer Society Press, Los Alamitos, 2008, 59–63
[7] I. Düntsch, M. Winter, “Timed contact algebras”, Proc. 16th Int. Symp. on temporal representation and reasoning, TIME 2009 (Brixen, Italy 23–25 July 2009), eds. C. Lutz, J-F. Raskin, IEEE Computer Society Press, Los Alamitos, 2009, 133–138
[8] V. Nenchev, “Logics for stable and unstable mereological relations”, Cent. Eur. J. Math., 9:6 (2011), 1354–1379 | DOI | MR | Zbl
[9] V. Nenchev, “Dynamic relational mereotopology: logics for stable and unstable relations”, Log. Log. Philos., 22:3 (2013), 295–325 | MR | Zbl
[10] R. Konchakov, A. Kurucz, F. Wolter, M. Zakharyaschev, “Spatial logic $+$ temporal logic $=$ ?”, Handbook of spatial logics, eds. M. Aiello et al., Springer-Verlag, Dordrecht, 2007, 497–564 | DOI | MR
[11] R. Goldblatt, “Diodorean modality in Minkowski spacetime”, Stud. Log., 39 (1980), 219–236 | DOI | MR | Zbl
[12] V. B. Shekhtman, “Modal logics of domains on the real plane”, Stud. Log., 42 (1983), 63–80 | DOI | MR | Zbl
[13] I. Shapirovsky, V. Shehtman, “Chronological modality in Minkowski spacetime”, Sel. papers the 4th conf. AiML 2002 (Toulouse, France, October 2002), Advances in modal logic, 4, eds. P. Balbiani et al., King's College Publ., London, 2003, 437–459 | MR | Zbl
[14] I. Shapirovsky, V. Shehtman, “Modal logics of regions and Minkowski spacetime”, J. Log. Comput., 15:4 (2005), 559–574 | DOI | MR | Zbl
[15] A. N. Whitehead, Process and reality: An essay in cosmology, Macmillan Co., New York, 1929
[16] A. N. Whitehead, Science and the modern world, The Great Books of the Western World, 55, MacMillan Co., New Work, 1925