Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2016_55_2_a4, author = {N. A. Bazhenov and I. Sh. Kalimullin and M. M. Yamaleev}, title = {Degrees of categoricity~vs. strong degrees of categoricity}, journal = {Algebra i logika}, pages = {257--263}, publisher = {mathdoc}, volume = {55}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2016_55_2_a4/} }
TY - JOUR AU - N. A. Bazhenov AU - I. Sh. Kalimullin AU - M. M. Yamaleev TI - Degrees of categoricity~vs. strong degrees of categoricity JO - Algebra i logika PY - 2016 SP - 257 EP - 263 VL - 55 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2016_55_2_a4/ LA - ru ID - AL_2016_55_2_a4 ER -
N. A. Bazhenov; I. Sh. Kalimullin; M. M. Yamaleev. Degrees of categoricity~vs. strong degrees of categoricity. Algebra i logika, Tome 55 (2016) no. 2, pp. 257-263. http://geodesic.mathdoc.fr/item/AL_2016_55_2_a4/
[1] E. B. Fokina, I. Kalimullin, R. Miller, “Degrees of categoricity of computable structures”, Arch. Math. Logic, 49:1 (2010), 51–67 | DOI | MR | Zbl
[2] B. F. Csima, J. N. Y. Franklin, R. A. Shore, “Degrees of categoricity and the hyperarithmetic hierarchy”, Notre Dame J. Formal Logic, 54:2 (2013), 215–231 | DOI | MR | Zbl
[3] R. Miller, “$\mathbf d$-computable categoricity for algebraic fields”, J. Symb. Log., 74:4 (2009), 1325–1351 | DOI | MR | Zbl
[4] B. A. Anderson, B. F. Csima, “Degrees that are not degrees of categoricity”, Notre Dame J. Formal Logic (to appear)
[5] N. A. Bazhenov, “Spektry avtoustoichivosti bulevykh algebr”, Algebra i logika, 53:6 (2014), 764–769 | MR
[6] E. Fokina, A. Frolov, I. Kalimullin, “Categoricity spectra for rigid structures”, Notre Dame J. Formal Logic, 57:1 (2016), 45–57 | DOI | MR | Zbl