Equational conditions in universal algebraic geometry
Algebra i logika, Tome 55 (2016) no. 2, pp. 219-256

Voir la notice de l'article provenant de la source Math-Net.Ru

Different types of compactness in the Zariski topology are explored: for instance, being equational Noetherian, being equational Artinian, $q_\omega$- and $u_\omega$-compactness. Moreover, general results on the Zariski topology over algebras and groups are proved.
Mots-clés : algebraic structures, equations, equational domains
Keywords: algebraic sets, radical ideal, coordinate algebra, Zariski topology, equationally Noetherian algebras, $q_\omega$-compactness, $u_\omega$-compactness, metacompact algebras, metacompact spaces, equationally Artinian algebras, prevarieties, varieties, free algebras, Hilbert's basis theorem.
@article{AL_2016_55_2_a3,
     author = {P. Modabberi and M. Shahryari},
     title = {Equational conditions in universal algebraic geometry},
     journal = {Algebra i logika},
     pages = {219--256},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_2_a3/}
}
TY  - JOUR
AU  - P. Modabberi
AU  - M. Shahryari
TI  - Equational conditions in universal algebraic geometry
JO  - Algebra i logika
PY  - 2016
SP  - 219
EP  - 256
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_2_a3/
LA  - ru
ID  - AL_2016_55_2_a3
ER  - 
%0 Journal Article
%A P. Modabberi
%A M. Shahryari
%T Equational conditions in universal algebraic geometry
%J Algebra i logika
%D 2016
%P 219-256
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_2_a3/
%G ru
%F AL_2016_55_2_a3
P. Modabberi; M. Shahryari. Equational conditions in universal algebraic geometry. Algebra i logika, Tome 55 (2016) no. 2, pp. 219-256. http://geodesic.mathdoc.fr/item/AL_2016_55_2_a3/