Equational conditions in universal algebraic geometry
Algebra i logika, Tome 55 (2016) no. 2, pp. 219-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

Different types of compactness in the Zariski topology are explored: for instance, being equational Noetherian, being equational Artinian, $q_\omega$- and $u_\omega$-compactness. Moreover, general results on the Zariski topology over algebras and groups are proved.
Mots-clés : algebraic structures, equations, equational domains
Keywords: algebraic sets, radical ideal, coordinate algebra, Zariski topology, equationally Noetherian algebras, $q_\omega$-compactness, $u_\omega$-compactness, metacompact algebras, metacompact spaces, equationally Artinian algebras, prevarieties, varieties, free algebras, Hilbert's basis theorem.
@article{AL_2016_55_2_a3,
     author = {P. Modabberi and M. Shahryari},
     title = {Equational conditions in universal algebraic geometry},
     journal = {Algebra i logika},
     pages = {219--256},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_2_a3/}
}
TY  - JOUR
AU  - P. Modabberi
AU  - M. Shahryari
TI  - Equational conditions in universal algebraic geometry
JO  - Algebra i logika
PY  - 2016
SP  - 219
EP  - 256
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_2_a3/
LA  - ru
ID  - AL_2016_55_2_a3
ER  - 
%0 Journal Article
%A P. Modabberi
%A M. Shahryari
%T Equational conditions in universal algebraic geometry
%J Algebra i logika
%D 2016
%P 219-256
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_2_a3/
%G ru
%F AL_2016_55_2_a3
P. Modabberi; M. Shahryari. Equational conditions in universal algebraic geometry. Algebra i logika, Tome 55 (2016) no. 2, pp. 219-256. http://geodesic.mathdoc.fr/item/AL_2016_55_2_a3/

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[2] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Discriminating and co-discriminating groups”, J. Group Theory, 3:4 (2000), 467–479 | DOI | MR | Zbl

[3] G. Baumslag, A. Myasnikov, V. Roman'kov, “Two theorems about equationally Noetherian groups”, J. Algebra, 194:2 (1997), 654–664 | DOI | MR | Zbl

[4] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group. I: Irreducibility of quadratic equations and Nullstellensatz”, J. Algebra, 200:2 (1998), 472–516 | DOI | MR | Zbl

[5] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[6] O. Kharlampovich, A. Myasnikov, “Tarski's problem about the elementary theory of free groups has a positive solution”, Electron. Res. Announc. Am. Math. Soc., 4:14 (1998), 101–108 | DOI | MR | Zbl

[7] Z. Sela, Diophantine geometry over groups: I-X, Preprints, Arxiv

[8] O. Kharlampovich, A. Myasnikov, “Elementary theory of free non-abelian groups”, J. Algebra, 302:2 (2006), 451–552 | DOI | MR | Zbl

[9] E. Yu. Daniyarova, V. N. Remeslennikov, “Ogranichennaya agebraicheskaya geometriya nad svobodnoi algebroi Li”, Algebra i logika, 44:3 (2005), 269–304 | MR | Zbl

[10] P. V. Morar, A. N. Shevlyakov, “Algebraic geometry over the additive monoid of natural numbers: Systems of coefficient free equations”, Combinatorial and geometric group theory, Dortmund and Ottawa–Montreal conferences, Trends Math., eds. O. Bogopolski et al., Birkhauser, Basel, 2010, 261–278 | MR | Zbl

[11] A. N. Shevlyakov, “Algebraic geometry over natural numbers. The classification of coordinate monoids”, Groups Complex. Cryptol., 2:1 (2010), 91–111 | DOI | MR | Zbl

[12] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups, A Festschrift in honor of A. Gaglione, Papers of the conf. (Fairfield, USA, March 2007 in honour of A. Gaglione's 60th birthday), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | MR | Zbl

[13] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II. Osnovaniya”, Fundam. prikl. matem., 17:1 (2011/2012), 65–106 | MR

[14] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures. III: Equationally Noetherian property and compactness”, Southeast Asian Bull. Math., 35:1 (2011), 35–68 | MR | Zbl

[15] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. IV. Ekvatsionalnye oblasti i ko-oblasti”, Algebra i logika, 49:6 (2010), 715–756 | MR

[16] S. Burris, H. P. Sankappanavar, A course in universal algebra, Springer-Verlag, New York, 1981 | MR | Zbl

[17] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999

[18] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[19] S. I. Adyan, “Beskonechnye neprivodimye sistemy gruppovykh tozhdestv”, Izv. AN SSSR. Ser. matem., 34:4 (1970), 715–734 | MR | Zbl

[20] M. Shahryari, “Equationally noetherian algebras and chain conditions”, J. Sib. Fed. Univ. Math. Phys., 6:4 (2013), 521–526