Projections of finite one-generated rings with identity
Algebra i logika, Tome 55 (2016) no. 2, pp. 192-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

Associative rings $R$ and $R'$ are said to be lattice-isomorphic if their subring lattices $L(R)$ and $L(R')$ are isomorphic. An isomorphism of the lattice $L(R)$ onto the lattice $L(R')$ is called a projection (or else a lattice isomorphism) of the ring $R$ onto the ring $R'$. A ring $R'$ is called the projective image of a ring $R$. Lattice isomorphisms of finite one-generated rings with identity are studied. We elucidate the general structure of finite one-generated rings with identity and also give necessary and sufficient conditions for a finite ring decomposable into a direct sum of Galois rings to be generated by one element. Conditions are found under which the projective image of a ring decomposable into a direct sum of finite fields is a one-generated ring. We look at lattice isomorphisms of one-generated rings decomposable into direct sums of Galois rings of different types. Three main types of Galois rings are distinguished: finite fields, rings generated by idempotents, and rings of the form $GR(p^n,m)$, where $m>1$ and $n>1$. We specify sufficient conditions for the projective image of a onegenerated ring decomposable into a sum of Galois rings and a nil ideal to be generated by one element.
Keywords: finite rings, one-generated rings, lattice isomorphisms of associative rings.
@article{AL_2016_55_2_a2,
     author = {S. S. Korobkov},
     title = {Projections of finite one-generated rings with identity},
     journal = {Algebra i logika},
     pages = {192--218},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_2_a2/}
}
TY  - JOUR
AU  - S. S. Korobkov
TI  - Projections of finite one-generated rings with identity
JO  - Algebra i logika
PY  - 2016
SP  - 192
EP  - 218
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_2_a2/
LA  - ru
ID  - AL_2016_55_2_a2
ER  - 
%0 Journal Article
%A S. S. Korobkov
%T Projections of finite one-generated rings with identity
%J Algebra i logika
%D 2016
%P 192-218
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_2_a2/
%G ru
%F AL_2016_55_2_a2
S. S. Korobkov. Projections of finite one-generated rings with identity. Algebra i logika, Tome 55 (2016) no. 2, pp. 192-218. http://geodesic.mathdoc.fr/item/AL_2016_55_2_a2/

[1] S. S. Korobkov, “Proektirovaniya periodicheskikh nilkolets”, Izv. vuzov. Matem., 1980, no. 7, 30–38 | MR | Zbl

[2] S. S. Korobkov, “Reshetochnye izomorfizmy konechnykh kolets bez nilpotentnykh elementov”, Izv. Ural. gos. un-ta, 2002, no. 22, Matem. i mekhan. Kompyuter. n., vyp. 4, 81–93 | MR | Zbl

[3] S. S. Korobkov, “Proektirovaniya kolets Galua”, Algebra i logika, 54:1 (2015), 16–33 | DOI | MR | Zbl

[4] B. R. McDonald, Finite rings with identity, Marcel Dekker, New York, 1974 | MR | Zbl

[5] R. L. Kruse, D. T. Price, Nilpotent rings, Gordon and Breach Sci. Publ., New-York–London–Paris, 1969 | MR | Zbl

[6] R. Lidl, G. Niderraiter, Konechnye polya, V 2-kh t., v. 1, Mir, M., 1988

[7] S. S. Korobkov, “Konechnye koltsa, soderzhaschie v tochnosti dva maksimalnykh podkoltsa”, Izv. vuzov. Matem., 2011, no. 6, 55–62 | MR | Zbl

[8] S. S. Korobkov, Reshetochnye izomorfizmy assotsiativnykh periodicheskikh kolets, Dep. v VINITI, No 2132-88, Sverdl. gos. ped. in-t, Sverdlovsk, 1988, 18 pp.

[9] S. S. Korobkov, “Periodicheskie koltsa s razlozhimymi v pryamoe proizvedenie reshetkami podkolets”, Issledovanie algebraicheskikh sistem po svoistvam ikh podsistem, Ural. gos. ped. un-t, Sverdlovsk, 1998, 48–59

[10] S. S. Korobkov, E. M. Svinina, V. D. Smirnov, Assotsiativnye koltsa maloi dliny, Dep. v VINITI, No 1441-90, Sverdl. gos. ped. in-t, Sverdlovsk, 1990, 40 pp.