The Schur–Wielandt theory for central $S$-rings
Algebra i logika, Tome 55 (2016) no. 1, pp. 58-74

Voir la notice de l'article provenant de la source Math-Net.Ru

Two basic results on $S$-rings over an Abelian group are the Schur theorem on multipliers and the Wielandt theorem on primitive $S$-rings over groups with a cyclic Sylow subgroup. Neither of these is directly generalized to the non-Abelian case. Nevertheless, we prove that the two theorems are true for central $S$-rings over any group, i.e., for $S$-rings that are contained in the center of the group ring of that group (such $S$-rings arise naturally in the supercharacter theory). Extending the concept of a $B$-group introduced by Wielandt, we show that every Camina group is a generalized $B$-group, whereas simple groups, with few exceptions, cannot be of this type.
Keywords: $S$-ring
Mots-clés : conjugacy class, $B$-group.
@article{AL_2016_55_1_a3,
     author = {M. E. Muzychuk and I. N. Ponomarenko and G. Chen},
     title = {The {Schur{\textendash}Wielandt} theory for central $S$-rings},
     journal = {Algebra i logika},
     pages = {58--74},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_1_a3/}
}
TY  - JOUR
AU  - M. E. Muzychuk
AU  - I. N. Ponomarenko
AU  - G. Chen
TI  - The Schur–Wielandt theory for central $S$-rings
JO  - Algebra i logika
PY  - 2016
SP  - 58
EP  - 74
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_1_a3/
LA  - ru
ID  - AL_2016_55_1_a3
ER  - 
%0 Journal Article
%A M. E. Muzychuk
%A I. N. Ponomarenko
%A G. Chen
%T The Schur–Wielandt theory for central $S$-rings
%J Algebra i logika
%D 2016
%P 58-74
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_1_a3/
%G ru
%F AL_2016_55_1_a3
M. E. Muzychuk; I. N. Ponomarenko; G. Chen. The Schur–Wielandt theory for central $S$-rings. Algebra i logika, Tome 55 (2016) no. 1, pp. 58-74. http://geodesic.mathdoc.fr/item/AL_2016_55_1_a3/