The Schur--Wielandt theory for central $S$-rings
Algebra i logika, Tome 55 (2016) no. 1, pp. 58-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two basic results on $S$-rings over an Abelian group are the Schur theorem on multipliers and the Wielandt theorem on primitive $S$-rings over groups with a cyclic Sylow subgroup. Neither of these is directly generalized to the non-Abelian case. Nevertheless, we prove that the two theorems are true for central $S$-rings over any group, i.e., for $S$-rings that are contained in the center of the group ring of that group (such $S$-rings arise naturally in the supercharacter theory). Extending the concept of a $B$-group introduced by Wielandt, we show that every Camina group is a generalized $B$-group, whereas simple groups, with few exceptions, cannot be of this type.
Keywords: $S$-ring
Mots-clés : conjugacy class, $B$-group.
@article{AL_2016_55_1_a3,
     author = {M. E. Muzychuk and I. N. Ponomarenko and G. Chen},
     title = {The {Schur--Wielandt} theory for central $S$-rings},
     journal = {Algebra i logika},
     pages = {58--74},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_1_a3/}
}
TY  - JOUR
AU  - M. E. Muzychuk
AU  - I. N. Ponomarenko
AU  - G. Chen
TI  - The Schur--Wielandt theory for central $S$-rings
JO  - Algebra i logika
PY  - 2016
SP  - 58
EP  - 74
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_1_a3/
LA  - ru
ID  - AL_2016_55_1_a3
ER  - 
%0 Journal Article
%A M. E. Muzychuk
%A I. N. Ponomarenko
%A G. Chen
%T The Schur--Wielandt theory for central $S$-rings
%J Algebra i logika
%D 2016
%P 58-74
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_1_a3/
%G ru
%F AL_2016_55_1_a3
M. E. Muzychuk; I. N. Ponomarenko; G. Chen. The Schur--Wielandt theory for central $S$-rings. Algebra i logika, Tome 55 (2016) no. 1, pp. 58-74. http://geodesic.mathdoc.fr/item/AL_2016_55_1_a3/

[1] I. Schur, “Zur Theorie der einfach transitiven Permutationsgruppen”, Sitzungsberichte Akad. Berlin, 18–20 (1933), 598–623 | Zbl

[2] H. Wielandt, Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl

[3] H. Wielandt, “Permutation representations”, Ill. J. Math., 13 (1969), 91–94 | MR | Zbl

[4] M. Muzychuk, I. Ponomarenko, “Schur rings”, Eur. J. Comb., 30:6 (2009), 1526–1539 | DOI | MR | Zbl

[5] A. O. F. Hendrickson, “Supercharacter theory constructions corresponding to Schur ring products”, Commun. Algebra, 40:12 (2012), 4420–4438 | DOI | MR | Zbl

[6] A. R. Camina, “Some conditions which almost characterize Frobenius groups”, Isr. J. Math., 31:2 (1978), 153–160 | DOI | MR | Zbl

[7] W. Feit, G. M. Seitz, “On finite rational groups and related topics”, Ill. J. Math., 33:1 (1989), 103–131 | MR | Zbl

[8] B. Huppert, Character theory of finite groups, de Gruyter Exp. Math., 25, Walter de Gruyter, Berlin, 1998 | MR | Zbl

[9] S. Evdokimov, I. Ponomarenko, “A new look at the Burnside-Schur theorem”, Bull. Lond. Math Soc., 37:4 (2005), 535–546 | DOI | MR | Zbl

[10] T. Feng, “Non-abelian skew Hadamard difference sets fixed by a prescribed automorphism”, J. Comb. Theory, Ser. A, 118:1 (2011), 27–36 | DOI | MR | Zbl

[11] S. Dolfi, A. Moretó, G. Navarro, “The groups with exactly one class of size a multiple of $p$”, J. Group Theory, 12:2 (2009), 219–234 | DOI | MR | Zbl

[12] E. Bannai, T. Ito, Algebraic combinatorics, v. I, Math. Lect. Note Series, Association schemes, The Benjamin/Cummings Publ. Co. Inc. Advanced Book Program, Menlo Park, California etc., 1984 | MR | Zbl

[13] M. Hirasaka, H. Kang, K. Kim, “Characterization of association schemes by equitable partitions”, Eur. J. Combin., 27:2 (2006), 139–152 | DOI | MR | Zbl

[14] P. P. Alejandro, R. A. Bailey, P. J. Cameron, “Association schemes and permutation groups”, Discrete Math., 266:1–3 (2003), 47–67 | DOI | MR | Zbl