Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2016_55_1_a3, author = {M. E. Muzychuk and I. N. Ponomarenko and G. Chen}, title = {The {Schur--Wielandt} theory for central $S$-rings}, journal = {Algebra i logika}, pages = {58--74}, publisher = {mathdoc}, volume = {55}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2016_55_1_a3/} }
M. E. Muzychuk; I. N. Ponomarenko; G. Chen. The Schur--Wielandt theory for central $S$-rings. Algebra i logika, Tome 55 (2016) no. 1, pp. 58-74. http://geodesic.mathdoc.fr/item/AL_2016_55_1_a3/
[1] I. Schur, “Zur Theorie der einfach transitiven Permutationsgruppen”, Sitzungsberichte Akad. Berlin, 18–20 (1933), 598–623 | Zbl
[2] H. Wielandt, Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl
[3] H. Wielandt, “Permutation representations”, Ill. J. Math., 13 (1969), 91–94 | MR | Zbl
[4] M. Muzychuk, I. Ponomarenko, “Schur rings”, Eur. J. Comb., 30:6 (2009), 1526–1539 | DOI | MR | Zbl
[5] A. O. F. Hendrickson, “Supercharacter theory constructions corresponding to Schur ring products”, Commun. Algebra, 40:12 (2012), 4420–4438 | DOI | MR | Zbl
[6] A. R. Camina, “Some conditions which almost characterize Frobenius groups”, Isr. J. Math., 31:2 (1978), 153–160 | DOI | MR | Zbl
[7] W. Feit, G. M. Seitz, “On finite rational groups and related topics”, Ill. J. Math., 33:1 (1989), 103–131 | MR | Zbl
[8] B. Huppert, Character theory of finite groups, de Gruyter Exp. Math., 25, Walter de Gruyter, Berlin, 1998 | MR | Zbl
[9] S. Evdokimov, I. Ponomarenko, “A new look at the Burnside-Schur theorem”, Bull. Lond. Math Soc., 37:4 (2005), 535–546 | DOI | MR | Zbl
[10] T. Feng, “Non-abelian skew Hadamard difference sets fixed by a prescribed automorphism”, J. Comb. Theory, Ser. A, 118:1 (2011), 27–36 | DOI | MR | Zbl
[11] S. Dolfi, A. Moretó, G. Navarro, “The groups with exactly one class of size a multiple of $p$”, J. Group Theory, 12:2 (2009), 219–234 | DOI | MR | Zbl
[12] E. Bannai, T. Ito, Algebraic combinatorics, v. I, Math. Lect. Note Series, Association schemes, The Benjamin/Cummings Publ. Co. Inc. Advanced Book Program, Menlo Park, California etc., 1984 | MR | Zbl
[13] M. Hirasaka, H. Kang, K. Kim, “Characterization of association schemes by equitable partitions”, Eur. J. Combin., 27:2 (2006), 139–152 | DOI | MR | Zbl
[14] P. P. Alejandro, R. A. Bailey, P. J. Cameron, “Association schemes and permutation groups”, Discrete Math., 266:1–3 (2003), 47–67 | DOI | MR | Zbl