Definability of linear orders over negative equivalences
Algebra i logika, Tome 55 (2016) no. 1, pp. 37-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study linear orders definable over negative and positive equivalences and their computable automorphisms. Special attention is paid to equivalences like $\eta(\alpha)=\alpha^2\cup\mathrm{id}_\omega$, $\alpha\subseteq\omega$. In particular, we describe orders that have negative presentations over such equivalences for co-enumerable sets $\alpha$. Presentable and nonpresentable order types are exemplified for equivalences with various extra properties. We also give examples of negative orders with computable automorphisms whose inverses are not computable.
Keywords: linear order, negative equivalence, computable automorphism.
@article{AL_2016_55_1_a2,
     author = {N. Kh. Kasymov and A. S. Morozov},
     title = {Definability of linear orders over negative equivalences},
     journal = {Algebra i logika},
     pages = {37--57},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2016_55_1_a2/}
}
TY  - JOUR
AU  - N. Kh. Kasymov
AU  - A. S. Morozov
TI  - Definability of linear orders over negative equivalences
JO  - Algebra i logika
PY  - 2016
SP  - 37
EP  - 57
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2016_55_1_a2/
LA  - ru
ID  - AL_2016_55_1_a2
ER  - 
%0 Journal Article
%A N. Kh. Kasymov
%A A. S. Morozov
%T Definability of linear orders over negative equivalences
%J Algebra i logika
%D 2016
%P 37-57
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2016_55_1_a2/
%G ru
%F AL_2016_55_1_a2
N. Kh. Kasymov; A. S. Morozov. Definability of linear orders over negative equivalences. Algebra i logika, Tome 55 (2016) no. 1, pp. 37-57. http://geodesic.mathdoc.fr/item/AL_2016_55_1_a2/

[1] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[2] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[3] A. I. Maltsev, “K obschei teorii algebraicheskikh sistem”, Matem. sb., 35(77):1 (1954), 3–20 | MR | Zbl

[4] A. I. Maltsev, “Konstruktivnye algebry. 1”, UMN, 16:3 (1961), 3–60 | MR | Zbl

[5] A. I. Maltsev, “Pozitivnye i negativnye numeratsii”, Dokl. AN SSSR, 160:2 (1965), 278–280 | Zbl

[6] N. Kh. Kasymov, “Rekursivno otdelimye numerovannye algebry”, UMN, 51:3(309) (1996), 145–176 | DOI | MR | Zbl

[7] A. S. Morozov, J. K. Truss, “On computable automorphisms of the rational numbers”, J. Symb. Log., 66:3 (2001), 1458–1470 | DOI | MR | Zbl

[8] A. S. Morozov, “Groups of computable automorphisms”, Handbook of recursive mathematics, v. 1, Stud. Log. Found. Math., 138, Recursive model theory, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 311–345 | DOI | MR | Zbl

[9] V. Kharizanova, R. Miller, A. S. Morozov, “Prostye struktury so slozhnoi simmetriei”, Algebra i logika, 49:1 (2010), 98–134 | MR | Zbl

[10] N. Kh. Kasymov, “O polugruppakh rekursivnykh avtomorfizmov numerovannykh sistem”, Dokl. AN RUz, 1996, no. 12, 3–4 | Zbl